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SEQUENTIAL MEASUREMENT OF MULTIDIMENSIONAL TRANSDUCERS* 

ABSTRACT 

Although the problem of decoding tree-encoded messages in communications and that of measuring 

the parameters which describe a multidimensional transducer appear very different at first, striking 

similarities arise upon closer scrutiny. These similarities are most evident when each successive 

transducer output depends on an additional transducer parameter. Because of these similarities and 

because sequential decoding has been so successful in decoding tree-encoded messages, a study of 

the application of sequential decoding algorithms to measurements was undertaken. 

This report analyzes a sequential algorithm suggested by R. M. Fano, Massachusetts Institute of Tech- 

nology and describes its application to measurement problems. From the analysis, bounds to the 

average number of computations needed to estimate one parameter are obtained. A bound is also de- 

rived for the probability of estimating at least one parameter of a set incorrectly. Itwill become ap- 

parent that when an attempt is made to differentiate between parameter values that produce too small 

an effect on the output, relative to the noise, the sequential method will fail. This difficulty deter- 

mines a limit to the precision obtainable with the sequential method. This critical level may be 

likened to the computational cutoff rate in the corresponding communication problem. 

A series of simulation experiments was performed to test the hypotheses and results of the theory. 

These experiments consisted of estimating the characteristic impedance values of the sections of a 

transmission line constructed of many short segments. This problem displays many of the features 

characteristic of geophysical layer determination. Although the theoretical and simulated measure- 

ment problems were not identical, the theoretical and experimental results agree, at least qualita- 

tively. Thus it appears that further research is warranted on the application of sequential decoding 

to actual measurement problems. 

Accepted for the Air Force 
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Lt Colonel, USAF 
Chief,  Lincoln Laboratory Office 

* This report is based on a thesis of the same title submitted to the Department of Electrical Engi- 
neering at the Massachusetts Institute of Technology on 23 September 1964, in partial fulfillment of 
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SEQUENTIAL MEASUREMENT 
OF MULTIDIMENSIONAL TRANSDUCERS 

I.      INTRODUCTORY REMARKS 

A. Introduction 

One of the traditional areas of interest to the electrical engineer has been the design of 
measurement equipment.    Historically, he first concentrated on measuring a single unknown 

parameter,  trying to do so with a minimum of interference from other quantities.    Then as time 

went on,  it became necessary to measure two unknowns simultaneously and the complexity of 
measurement techniques increased.    Today,  the number of unknowns in measurement problems 

is typically even larger.    We are therefore forced to develop techniques applicable to the meas- 
urement of a large number of parameters from data which depend on many of them simultaneously. 

The interpretation of the data from such measurements is quite complicated.    In particular, 
the data required to measure one parameter may depend on some of the other parameters whose 
values are not determined.    Ideally,  we could quantize the values of the parameters to some ac- 
ceptable degree of precision,  form all possible combinations of values for the system parameters, 

and determine from the instrument's internal relations the output for each such combination.   Then 

we could compare the actual output with each of these postulated outputs,  and choose as the meas- 

urement result that set of system parameters which produces the most favorable comparison. 

However,  if each parameter takes on D values and there are  N parameters,  the number of com- 
N binations is D   ,  which is extremely large even for relatively small values of D and N.    It is 

therefore desirable to develop procedures not characterized by this exponential growth in com- 

putational load. 
In this report, we consider such a problem.    More specifically, we define a class of multi- 

dimensional measurement problems endowed with a so-called tree structure,  and consider in 

detail an algorithm designed to determine the  N unknown parameters by a number of computations 

that grows only linearly with  N.    The particular algorithm analyzed was introduced by Fano    for 

sequentially decoding tree-encoded messages transmitted over communication channels.    We 

shall show how this technique can also be applied to measurements. 

B. Measurement Problem 

In most measurement problems,  an observer attempts to assign estimated values to a set of 
unknown system parameters.    We assume throughout the report that the observer knows which 

parameters characterize the system being measured and that he also knows the range of these 

parameters.    With this information,  the observer will be able to construct a general model of 
the system being measured and then,  by estimating the unknown parameters,  he will be able to 



characterize it completely.    Perhaps it is required that the estimates of the parameters satisfy 

some precision criterion.    Generally, there is noise corrupting the measurement,  thereby making 

the job more difficult.    If this noise is too severe,  it may be impossible to estimate the param- 

eters with less than some specific error.    Hopefully,  analysis of the particular measurement 

problem permits the observer to determine in advance whether a specified measurement tech- 

nique will satisfy the precision criterion. 

A model of the system being measured,  together with the measuring equipment,  can be con- 

structed as in Fig. 1.    The probe signal, under the observer's control,  enters the system which 

is described by the unknown parameters,  and reacts with it.    The result of the reaction is an 

output which is usually corrupted by noise before it becomes available to the observer.    This 

distorted output then becomes available for processing,  and the observer has the option of choos- 

ing the processing technique that will provide the best possible measurement. 

[3-22-5964] 
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Fig. 1.    Generalized measurement equipment. 

In the cases of principal interest,  the output depends on several parameters simultaneously. 

Assigning estimated values to these parameters (under a maximum likelihood criterion) involves 

finding the set of parameter values which maximizes the probability of the output,  conditioned 

on these values.    Since several parameters determine the output,  one must find the maximum of 

a function of several variables.    This search is known as a multidimensional "hill climb."   Since 
the sequential decoding algorithms used for decoding tree-encoded messages perform such a 
hill climb in an efficient manner, the possibility of using an analogous procedure here suggests 

itself. 
In the remainder of this report,  we restrict our attention to additive noise,   since it is the 

type most frequently encountered in measurement problems.    On the basis of this assumption, 
we adopt the following terminology as illustrated in Fig. 1.    Let  s  be a vector"f with enough com- 
ponents to represent the probe signal;  let h be a similar vector describing the unknown param- 

eters;  let  z be the output of the system being measured when the probe signal  s  is applied;  and 
let y be the output available to the observer as a noisy version of z*.    If n  is a vector describing 
the noise,  the additive noise assumption implies 

y  = z  + n 

C.    Communication Problem 

Since the motivation for the application of a sequential algorithm to measurements arose 

from certain similarities between measurement problems and communication problems,  we shall 

t In its most general sense, a vector can be regarded as an ordered set of quantities.    Thus a vector of sample 
values can be used to represent a time signal and a vector of arbitrary numbers can be used to represent a set of 
parameters. 



discuss the communication problem briefly.    The general communication system is shown in 

Fig. 2.    A message source is generating messages that must be transmitted to a user over a 

noisy channel.    Because of the noise, the transmitted signal does not arrive at the receiver ex- 

actly as transmitted,  but is corrupted by an unwanted effect imposed upon it by the channel.   Thus 

errors are made in conveying the source message to the user. 

3-22-5965 

Fig. 2.    Generalized communication system. 
SOURCE CHANNEL DECODER USER 

It is the communication engineer's job to design the encoder in such a way that the error 

probability is as low as possible.    Shannon,  in his classic paper,   considered this problem and 

introduced a measure of the information content of a message.    By using this measure,  he de- 

fined a rate of transmission in bits per second,   and proved that,  by proper encoding,  communi- 

cation over a noisy channel with as low a probability of error as desired is possible,   provided 

that the rate of transmission does not exceed a fixed quantity,  the channel capacity,  which is 

determined by the noise characteristics of the channel.    The proof was purely one of existence, 

and did not show explicitly how to construct good codes. 

Since Shannon's paper appeared,   information theorists have concerned themselves with the 

search for coding techniques    that permit communication with low error probability,  and are 

also relatively simple to implement.    The first codes investigated were called block codes and 
were designed to use on a binary channel.    In these codes,  a sequence of nR binary information 

symbols is encoded into a block of n binary symbols to be transmitted over the channel.    Here 

R,   the transmission rate,  is the ratio of the number of information bits to the total number of 
transmitted bits.    Shannon proved that there are block codes which yield an error probability that 

decreases exponentially with n,  the block length.    The rate at which this exponential decrease 
takes place indicates the quality of the code. 

Although it was possible to prove the existence of good block codes from ensemble average 
arguments,   it was difficult to find codes which had sufficient mathematical structure so that they 
could be encoded and decoded easily.    Much of the difficulty arose from the fact that the block 
length n  must be quite large to insure that the error probability be low.    Thus the number of 
code words 2       must also be large for the communication to continue at a reasonable rate.   Typ- 
ically,   10      code words might be used.    Ideally,  we could compare the received sequence of 
symbols with the transmitted sequence for each of these code words and,  by some measure of 

distance,  ascertain which code word is closest to the received word.    However, the large number 

of comparisons makes this procedure undesirable,  particularly since this number grows expo- 

nentially with block length.    Those long codes which,  because of mathematical structure,  are 

simply decoded,   suffer from a significantly higher error probability than theory shows can be 

obtained. 
4 

Several years ago,  Wozencraft    proposed a sequential decoding procedure for decoding 

binary convolutionally encoded messages.    As long as the rate did not exceed a particular quan- 

tity R which is strictly less than the channel capacity,  Wozencraft showed that the average 

number of computations needed to discard an incorrect symbol grew slowly with the constraint 

length (analogous to block length).    In addition,  under the same rate restriction,  this overall 
encoding-decoding system gave the same error exponent as that for random block codes.    Later 

5 1 this technique was generalized by Re if fen   for nonbinary alphabets.   Recently, Fano   suggested an 



alternate algorithm to sequentially decode tree-encoded messages.   This method could be analyzed 

more completely than that of Wozencraft,  and was shown to require an average number of compu- 

tations per digit that is independent of constraint length.     These sequential decoding techniques 
will be described in more detail later. 

D. Measurements Vs Communications 

If the measurement problem discussed in Sec. I-B.   is  compared with the communication 

problem,  some striking similarities appear.    In both problems,  a known vector quantity' reacts 

with an unknown vector quantity to produce a noise-free data vector.    In both cases,  there is a 

noise effect which prevents the user from observing the data vector directly and thereby deter- 

mining uniquely and at once the values of the set of unknowns.    In both instances,  he can perform 

an exhaustive search to find the best estimate for these quantities; however,  as previously dis- 

cussed, this technique is unattractive.    The only real difference lies in the form of the reaction 

between the known and the unknown vectors. 

The transformation from the message symbols to the transmitted symbols carried out in the 

encoder for communications,   and the transformation from the probe signal to the noise-free data 

vector in the measurement problem,   may both be represented by the general transformation 

T(s,h).    In the representation of the communications encoder,  let  s be the vector of encoding 

parameters and h the sequence of message symbols;  in the representation of the system under- 
going measurement,  let  s  represent the probe signal and h the unknown parameters.    Then in 
both communications and measurements,   s  and T  are known to the user and it is his task to 

determine h.    Thus an additional similarity exists between the measurement and the communi- 
cation problems. 

However,  it is at this point that a subtle difference arises.    For in communications,  the 
choice of T  is at the disposal of the user, whereas in measurements,   T,  although known,  is 
specified by the form of the system being measured.    Thus the particular communication prob- 
lem analogous to the general measurement problem is the study of a particular encoding tech- 

nique where the objective of the study is to develop an efficient decoding procedure and to as- 
certain how well this procedure will operate. 

Despite this difference,   it is clear that the number of similarities is sufficiently large to 

suggest that an efficient communication technique might apply to measurement problems as well. 

More specifically,  we have indicated above that the sequential decoding technique has permitted 

the multidimensional search,   required to decode tree-encoded messages in communications, to 

be completed with a reasonable number of computations.    We have also indicated that a similar 

multidimensional search occurs in interpreting measurement data.    Thus the possibility of using 

a sequential method in measurement problems arises. 

E. Objectives 

In this report,  we investigate the possibility of using a sequential processing method for 

measurements.    First,  we discuss the class of measurement problems which appear amenable 
to the application of a sequential method.    In this connection,  we shall discuss measures by 
which we can compare hypothesized noise-free output sequences (z* in Fig. 1) with actual data 
vectors (y  in Fig. 1);  we shall define a tree structure which is required for the sequential method 

t Again we refer to a vector in its most general sense. 



to apply to a measurement problem; we shall suggest a further requirement,  called the differ- 

ential bias assumption,  that guarantees the usefulness of the sequential method;  and we shall 

introduce examples which seem to satisfy the above two requirements. 
4 1 After describing the methods suggested by Wozencraft    and Fano    for sequential decoding, 

we analyze the Fano technique in detail.    We show that the average number of computations to 

decode one branch of the tree is bounded by a constant.    We also demonstrate that the proba- 

bility of incorrectly estimating a parameter decreases exponentially with the number of available 

output samples dependent upon that parameter.    For the case of white,  Gaussian noise,  graphs 

will be presented which show how the decoder's operation depends on the various quantities which 

are used to describe the decoder and on the noise level.    It will become apparent that when we 

try to differentiate between parameter values that produce too small an effect on the output,   rela- 
tive to the noise,  the sequential method will fail.    Thus there is a parameter analogous to R 

the rate above which the sequential method fails in communications. 
Finally,  the results of a simulation of the sequential method used on a particular simplified 

measurement problem will be presented.     It will be seen that the simulated behavior is very 

similar to the calculated behavior,  thereby lending support to the assumptions made in analyzing 

the sequential method as applied to the measurement problem.    The simulation results are for 
a model of the geophysical exploration problem,  and a clearer understanding of the difficulties 
inherent in this problem came about through the simulation.    Some thoughts in this area,  partic- 

ularly in connection with quantizing the unknown parameters,  will be presented.    Finally,   some 

suggestions for future research will be made. 

II.    APPLICATION OF SEQUENTIAL METHOD TO MEASUREMENTS 

A. Introduction 

In this section,  we consider specifically the application of a sequential method to measure- 

ments.    First,  we discuss metrics which must be used to define precisely the fit of a hypothesis 

to the data.    Then we set forth the two requirements sufficient to prove that the Fano algorithm 
will be applicable.    Next,  we consider two examples toward which the sequential method may be 

applied.    Finally, we describe the Wozencraft and Fano algorithms. 

B. Metrics 

In Sec. I-B,  we considered estimating a set of parameters h,  by comparing the output vector 

z,   resulting from a particular h * vector,  to the received y vector.    To carry out an algorithm, 
this notion must be made precise.    We consequently define a quantity,  hereafter denoted a 

metric,   which specifies the degree to which a fit is made. 
Before specifying the particular metric that will be considered in this report,  we recall the 

difference between maximum likelihood and maximum a posteriori estimation.    Suppose there is 
a set of alternatives {a.},   each occurring with the a priori probability p(a.).    We are trying to 
choose which alternative produced the datum d.    First, we could calculate the probability of 
each alternative,   conditional on the datum p(a./d),  and choose as the estimate that alternative 

which maximized this function.    This is referred to as maximum a posteriori estimation,   since 

p(a./d) is the a posteriori probability of the alternatives.    We note that the calculation is made 

from Bayes rule, 

tThe term metric is convenient but not strictly proper, since we do not require these metrics to have the mathe- 
matical properties of reflexivity, symmetry, and triangle inequality satisfaction. 



p(d|a.) p(a.) 
p(a|d)= ^ '—      . 

Sp(da.)p(a.) 
i 

Thus the a priori probabilities are used to carry out the a posteriori estimation method. 

Generally, however, the a priori probabilities are not known explicitly.    We must then take 

care not to introduce bias into the metric by the use of uncertain values for the a priori prob- 

abilities.    The maximum likelihood approach should therefore be considered. 

A maximum likelihood estimate is that value of the unknown parameter which maximizes 

the probability p(d/a.) of the datum,  conditional on the parameter value.    The maximum likeli- 

hood method has the benefit of being independent of the a priori knowledge,  and thus is more 

convenient to implement.    It is important to note that the maximum likelihood method is equiva- 

lent to the a posteriori probability method if the a priori probabilities are equal. 

Discussions of the appropriateness of each technique are common in the statistical litera- 

ture    and it could serve little purpose to continue them here.    Suffice it to say, however, that 

if one's ability to perform a measurement depended critically on the a priori probabilities,  then 

one would have little confidence in the result. 
Because we seldom have reliable a priori information available in a measurement problem, 

and for the other reasons cited above, we restrict ourselves in this report to a maximum likeli- 

hood approach.    Consequently,  the decoding metric should be a monotone function of p^y/z), 

the probability density function of the noise vector.'    It is also desirable to define the metric in 

such a way that independent contributions to the total are additive.    A metric with these proper- 

ties is proportional to logp^fy /z").    If the noise samples are indeed independent and identically 
n 

distributed, this becomes 

logpjy |z) = Yi logpJyJzJ    • 

j 

On correct paths, the expected value of this metric is 

J  p_(y |zT)logp^(y |z) d(y \z) = -H(N) 

where H(N) is the entropy of the noise vector. 

We shall see in the discussion of the Fano algorithm that the metric should increase on 

correct paths, while it should decrease on all others.    Therefore,  the metric for that algorithm 
will be chosen to be 

k 
Mk =    £   R + lnpn(y..|z.) 

k 

= kR +    YJ   dj 

tThe subscript n" specifies   the noise probability density function. 



where d. is the incremental contribution to the metric due to the noise and R  is a constant bias 

to be chosen later.    If R exceeds the noise entropy, this metric will,  on the average,  be com- 

posed of positive increments on the incorrect path.    If R  is not chosen too large,  and if the noise 

is not too great,  it will be shown that the metric will,  on the average,   decrease on all incorrect 

paths. 

C.    Tree Structures 

In the coupled parameter measurement problem, the observer has available the noisy data 

vector y and the probe signal  s  as well as some qualitative information about their relationship. 

This qualitative description is to be made explicit through the estimation of the unknown param- 

eters designated by h . 

A general estimation procedure for this complex problem might consist of guessing values 

for all N components of h and comparing the resultant  z vector with the received data vector 

y.    Then by varying the h  components until all possible vectors are tested, the observer can 

choose the best fit to the data vector y.    As mentioned in the introduction,  this would require an 

unrealistic number of attempts for any sizable number of h  components. 

Occasionally,   it may be possible to find the best fit by guessing an h vector and then ad- 

justing the guess,   a component at a time,   until the fit cannot be improved.    However,   this proce- 

dure has the pitfall of local maxima at which a poor fit gets poorer,  no matter how the h  com- 

ponents are individually varied.    Another difficulty arising with this method is the so-called 

"plateau" problem whereby,  for most guesses,  the adjustment of any h parameter gives a neg- 

ligible change in the fit. 

In the class of problems to which the sequential algorithm applies,  there is a structure known 

as a tree structure which permits these problems to be circumvented and is defined as follows. 
— N -* Suppose that each h is quantized to D levels so that there are D    possible h vectors.    Also 

suppose the components of z and h  can be ordered so that 

zl = fi(hi'3') 

z2 = f2(hl'h2'r) 

z. = f .(h ., hu, . . . , h., s*) 1       V   V   2 *   i*    ' 

Then a tree can be constructed having nodes which represent the set of all h vectors having a 

common initial part.    In this tree,  a node at depth  i represents all h vectors identical in the 

first  i components.    Since z. is dependent only on the first i h components,   a one-to-one cor- 

respondence exists between the D   nodes at depth i and the D   sets of h vectors where each set 
N-i consists of the D        vectors with a common prefix. 

Once this tree structure is assumed,   it becomes possible to perform the hill climb on an 

incremental basis.    That is,  one can estimate h. on the basis of y.,  and then,   conditional on 1 J 1 
this value for h.,   consider h2 using y2 for comparison as well as y.,  etc.    If the estimates are 

correct,  these comparisons will continue to be satisfactory.    However,   if an error occurs at 

one stage due to a large noise sample,  and if the effect of this incorrect hypothesis is to make 

the succeeding hypothesized z  components different from the true  z  components,  the error will 



become apparent at later stages.    When such evidence appears, the estimation of additional 

parameters should be halted,   and the processor should concentrate instead on correcting the er- 

ror.    The sequential decoding algorithms are formalized procedures for making and correcting 

these estimates and will be discussed later in this section.    First,  however,  we present examples 

of practical measurement interest which possess the tree structure defined above. 

D.    Example I.   Impulse Response of Discrete Linear Filter 

As a relatively simple example illustrating the use of a sequential measurement procedure, 

we consider a linear, time-invariant,  time- and amplitude-discrete filter.    Because of the linear 

aspect of this problem,  linear regression techniques can be used to estimate the components of 

the filter in a much less complex manner than the sequential one.    However,  the linear filter is 

simple and familiar enough to be described easily.    For completeness, the linear regression 

technique is briefly discussed in Appendix B. 

It is assumed that the amplitude of the filter impulse response is quantized to one bit (two 

levels) and that a necessary and sufficient description of the filter is given by its response to an 

input pulse of unit amplitude.    In addition,  the input signal amplitude is also quantized to one bit 

and is time discrete in synchronism with the filter response.    Gaussian noise samples are added 

to the filter output and the result is transmitted to the user,  whose task is to determine the filter 

response given the input signal and the noisy output. 

Part of the user's problem is to determine a satisfactory or perhaps even optimum (in some 

sense) input signal subject to some total energy constraint.    Of course,  the most obvious input 

is a sequence of unit pulses spaced sufficiently far apart to guarantee that the filter response has 

ended before a second response due to a second input pulse has begun.    With such an input,  since 

the symbols are independently disturbed by the noise,  the only reasonable strategy is to deter- 

mine the filter response components independently on the basis of the output components influenced 

by them.    No sequential procedure suggests itself here and indeed none can logically be proposed, 

since there is no output component influenced by more than one component of the filter response. 

However,  because he may want to put energy into the filter more rapidly than this procedure 

allows under a peak-power constraint,  the user may prefer to use a more complex input of shorter 

total duration than is permitted,   if outputs are not to overlap.    In this instance,  a natural se- 

quential procedure occurs and it is this procedure which will be discussed in the remainder of 

this section. 

The system under consideration consists of an input signal i*,  a filter response h,  an un- 

disturbed filter output  z,  a noise sequence n,  and a system output y.    The components of s* and 

h take on the values (+1) and (—1),  the components of z take on integral values,   and n  and y 

take on values in the continuum.    For simplicity,   we assume that the duration of h  is known to 

be  M units and that of s  is  N  units. 

Before describing the sequential procedure,  the ideal measurement technique will be dis- 

cussed.    The undisturbed output  z  is an M + N — 1 component time-discrete signal and can there- 

fore be plotted as a vector in an M + N — 1 dimensional vector space.    The noisy output y can 

also be plotted in this same space and,   if the noise level is not very high,  will be a point not far 

from z.    Now it is the user's task to determine from y which of the 2     possible vectors is the 

actual filter response.    Since the input signal s* is known,  the user could theoretically compute 
M -+ M -* -► the 2      z vectors corresponding to the 2     possible h vectors by convolving the known  s with 

each one of them.    Then the maximum likelihood filter response is that corresponding to the  z 



closest to the output signal y.    The effect of choosing s* is to move the 2      zT vectors in the output 
space;  optimally,   s* should be choosen to minimize the probability of confusion between them. 

Practically,  however, this method of measurement is not feasible,   since the number of compu- 
N tations 2     grow exponentially with the response duration. 

We immediately note the similarity between this ideal procedure and that existing for the 

decoding of convolutionally encoded messages.    In that case,  too,  the ideal method is imprac- 

tical because of the exponential growth in the number of computations with constraint length. 

The sequential decoding procedure is designed to avoid this exponential growth and it would not 

seem surprising that it could be applied to obtain the same advantage in this measurement 

problem. 

The key to the operation of a sequential procedure is the so-called tree structure.    In the 

measurement problem the structure arises as follows.    The input-output relationship for the 

filter is given by the well-known convolution integral (summation is due to the synchronous time- 

discrete input and filter response). 

J 

z. -   7,    h.s.   . 
i=0 

The indexing convention implies that only positive indices are meaningful.    Therefore,  we 

may write the first few equations as 

z    = h  s o       o o 

zl = hosl+hlso 
z2 = hoS2 + hlsl + h2so      '       etc- 

Consequently,  the two hypotheses for h    lead to two hypotheses for z  .    Given each hypothesis 
for h  ,  the two hypotheses for h    lead to two hypotheses for z.,  etc.    The tree is therefore con- 
structed by considering each path through the tree as a separate filter response and calculating 

for each branch the undisturbed filter output that would occur for the corresponding filter re- 

sponse.    This is illustrated in Fig. 3. 

After  M postulates have been made,  the entire filter response is determined.    However, 

N — 1 components of z* have not been compared with the corresponding components of y.   Although 

no choice remains, these components do contain information about the filter response compo- 

nents; therefore,  they should be used in the measurement procedure.    Consequently,  there will 

be Nz" components corresponding to the last branch of the tree.    We shall call this set of com- 

ponents the remainder set. 

In the next section,  we discuss a problem toward which the sequential procedure might 

realistically be applied. 

E.    Example II.   Reflection Study of Geophysical Layers 

In the simplified linear filter problem discussed in the preceding section,  the applicability 

of the sequential measurement technique came about through the dispersive nature of the filter. 

The first  M  successive output pulses each depend on a filter response component that had not 

affected the previous output pulses.    Thus a tree structure arose and the sequential procedure 

became feasible.    However,  because the outputs are linear functions of the unknown parameter, 
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Fig. 4.    Reflections from  layered structures. 

Note:   The pulses are labeled in accordance 

with the path they followed. 
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the sequential method is inferior to a linear regression technique which is much less complex 

to instrument. 

Of more practical interest is a problem in which the outputs are not linear fuctions of the 

unknown parameters,  and we choose the geophysical exploration problem as an example for this 

discussion.    Other examples might include radar investigation of targets with range extent and 

telephone line measurements by pulsed inputs.    The geophysical problem was chosen partly be- 

cause of the readiness with which the sequential technique could be adopted.    However,   it appears 

that all the information available to the observer is not utilized in geophysical work because of 

a lack of suitable data-processing techniques. 

For about fifty years,   artificially generated seismic waves have been used in the investiga- 

tion of layered structures beneath the earth's surface.    Although initially refraction studies were 

carried out exclusively,   improvements in technique since World War II have brought about a 

broad changeover to reflection methods.    Indeed,   in many areas of geological exploration,  such 

as in petroleum prospecting,  the change is almost complete. 

Generally speaking,  the earth's structure is one of multiple layers of varying materials and 

of varying thicknesses.    A seismic wave,  initiated by the detonation of several pounds of explo- 
sive,  travels downward through the earth's crust and is reflected,   in part,  at each boundary. 
Since the initial blast is pulse-like,  pulses from the succeeding layers will arrive at the surface 

at later times which depend specifically on the propagating media,  the location of the layers,  and 
the location of the observation point.    This is illustrated in Fig. 4(a-b).    By observing the arrival 
times and amplitudes of these pulses,   it is possible to deduce the layered structure of the 
subterrain. 

The seismic waves propagate through the layers in a manner governed by the wave equation 
for an acoustic wave in an elastic medium.    These waves travel with a velocity that depends on 
the medium,  and at a boundary they are partially reflected and partially transmitted.    It does 

not seem appropriate to discuss the pertinent equations in great detail,  since there are many 
formal presentations available.     We may say,  however,  that the equations and their solution are 

perfectly analogous to those obtained in the study of electromagnetic plane waves traveling through 

dielectric media. 

In particular,  we can define a characteristic impedance of a medium Z  ,  which is related to 

the velocity of propagation v and the medium's density p  by 

Z    = pv o 

If a pulse of amplitude  A  propagating in a medium with characteristic impedance ZQ. strikes 

perpendicularly to the boundary of a second medium with characteristic impedance Z02,  there 

will be a reflected pulse of amplitude 

Z02~Z01 
Z02 + Z01 

and a transmitted pulse of amplitude 

2Z-       -A      . 
Z02+ZCM 

On the basis of these amplitudes,  it is possible to calculate the entire response of a given struc- 
ture to an initial wave in terms of its amplitude and the various acoustic impedances.    Note that 
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multiple reflections may simultaneously arrive at the observer and these must be accounted for 

in the calculation. 

In the geophysical problem,  however, the acoustic impedances are the objective of the meas- 

urement.    At some time after the blast, the observed signal will be a very complex function of 

the many geophysical parameters.    However, we shall soon see that there is a tree structure that 

simplifies the processing and makes a sequential technique the natural one. 

Note,  first, that the first response to the observer is a reflection from the first boundary 

and that its time of arrival indicates the thickness of the first layer while the amplitude,  rela- 

tive to the amplitude of the initial disturbance, permits the acoustic impedance of the second 

layer (assuming that of the first is known) to be determined.    The next response is from the 

second boundary and gives information of the second layer's thickness and the third's impedance. 

Thus the layers may be considered sequentially and,  as the measurement process continues,  the 

effects of earlier layers may be removed from later data points. 

From the above description of the seismic reflection problem,  we can abstract a simplified 
9 

model which was simulated as a basis for testing the sequential measurement technique.     Con- 
sider a transmission line of L sections each of the same length.    Let the impedance of each sec- 

tion be one of the two quantities Z. or Z„.    Let the reflected output of the line be available to the 
observer disturbed by Gaussian white noise of variance a  .    Then the observer's objective is to 

determine the {Z     }.    In doing so,  he may choose any input that best satisfies his objective. 

Before proceeding to a more detailed description of sequential decoding,  a few more remarks 

relative to the geophysical exploration problem are in order.    When studying the data processing 

methods in this area,  one is struck by the dearth of precise techniques.    Indeed,  long-term am- 

plitude information is being generally discarded in favor of automatic volume control which per- 

mits a constant amplitude on the seismograph record without a need to calibrate.    The chief 

argument for this approach has been that the amplitude of the test pulse generated by the blast 
10 is too variable.    Only recently has the usefulness of the amplitude ratios been noted.       In addi- 

tion,  the majority of the seismographic data gathered in search of petroleum has been reduced 

by eye.    Consequently, the skill of the reducer is of prime importance and any oversight by him 

could result in the waste of an expensive seismic survey. 

Thus there is a strong need for automatic,  precise data reduction techniques.    Perhaps the 

sequential measurement technique will provide the basis for a practical,  efficient method to 

process data from the seismic exploration of layered geophysical structures. 

F.    Sequential Decoding (According to Wozencraft) 

In the preceding sections,  we discussed sequential algorithms in general and indicated some 

typical problems to which they may apply.    We next describe in detail the two procedures which 
have received the most attention.    Although the bulk of this work will be concerned with an algo- 

rithm similar to that of Fano, we include for completeness a brief description of the sequential 
4 5 decoding technique introduced by Wozencraft    and generalized by Reiffen. 

The objective in the measurement problem is to determine which of the  z vectors is "closest" 
to the y* vector that has been received.    The notion of closeness can be made explicit by defining 
a metric which is additive and increases with the size of the noise samples according to 

logp^y/zT) where p^fy*/2*) is the probability density function of the noise vector.    Suppose first 
n rf 

that in terms of this quantity,  one considers "radii" of constant metric around the received vec- 

tor y.    Then one may ask if any of the vectors lies within a radius r. of y".    This question could 
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be answered by postulating the first j  components of h,  computing the portion of the  z vector 

determined by this subset of h components,  and determining the portion of the total metric cal- 

culable on the basis of the partial hypothesis.    Certainly,  if the partial metric D. exceeds r., 
J 

the total metric will also.    We will see later that the average number of computations is reduced 
if r    is varied as the depth into the tree increases.    Therefore,  those  z" vectors very distant 

from the received y* will be eliminated from consideration before many of the components are 
M -* —■ tried.    Since most of the 2     z vectors are very different from y,  the number of computations 

will be greatly reduced and it is this reduction that permits,  on the average,   a linear rather than 

exponential growth in computation with N.    If the D. does not exceed r.,  then another component 

of h is postulated. 

Suppose that none of the  z vectors are within r    of y.    In that case, the procedure suggests 

repeating the procedure for r~ > r  .    Eventually,  the sphere will be enlarged sufficiently to in- 

clude one of the z* vectors and this one is considered the undisturbed filter output,   and the cor- 

responding filter response becomes the measurement result.    It may happen that more than one 
z  vector falls within an increased value of the radius and as a result the wrong response could be 

determined.    This event is one of the possibilities for error and it will be assumed conservatively 

that whenever it does happen,  an error results. 
Clearly,  the number of computations can be decreased,  if the radii considered above are 

changed as the procedure successively postulates more h  components.    Since it is unlikely that 
a cumulative metric will increase very rapidly for small values of j  and then very slowly for 
larger values in order that the total metric remains below r, ,  a set of criterion functions r, (j) 

should be used which increase monotonically.    This reduces the number of computations by 
causing any short path with rapidly increasing cumulative metric to be dropped from further con- 
sideration before the partial distance becomes equal to the maximum allowable distance.    Of 

course,  the correct path may have a metric which first increases rapidly and then much more 

slowly.    Although such a path may be rejected under this procedure for the k     criterion function, 

r,(j),   it will prove to be acceptable for some other criterion function r, ,(j),   k' > k. 
In the analysis of this technique,  the number of computations for rejecting the incorrect 

branches at a node have been bounded,  but the number for accepting the correct branch have not. 

The analysis of the Fano procedure permits a complete bound to the number of computations. 

G.    Sequential Decoding (According to Fano) 

To determine the  z* vector closest to the received y vector,   another related procedure, 

similar to that developed by Fano    for sequential decoding,  can also be used.    In this procedure, 

the paths through the encoding tree are also tested for cumulative distance,  but the thresholding 

strategy differs greatly.    A metric is used which tends to increase when the decoder is on the 

correct path and decrease when the incorrect path is followed.    With such a measure,  the anal- 

ogous procedure is to postulate successive branches, to compute the total measure and then to 

compare this with a threshold.    If the total measure crosses under the threshold,  the branch is 

considered unacceptable and other branches from the previous node are tried until an acceptable 

branch is found stemming from it. 
If this cannot be done,  the procedure is to back off another node and to test branches stemming 

from it against a threshold that is just satisfactory.    When the metric is chosen in such a way 
that the variation on the correct path will eventually put the total measure on the acceptable side 
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of the threshold,  this search will eventually be successful.    If the total does not cross the thresh- 

old, the threshold is adjusted by a multiple of a basic increment to just keep the current total 

metric satisfactory.    This practice of following the total metric as closely as possible with the 

threshold serves to minimize the number of computations with a small loss in error exponent. 

As indicated in Sec. II-B,  the Fano algorithm requires a metric that increases on the correct 

path and decreases on incorrect ones.    We have seen that the metric for n observation intervals 

n 

Mn = nR +    YJ   d. 
i=i 

where d. is the incremental contribution and R  is a constant bias,  has the desired properties. 

The decoder will consider branches stemming from a node in order of decreasing metric. 

It will record previous decisions by means of a vector variable i(l),  i(2), . . . , i(n) where i(n) is 

the order number of the branch selected by the decoder at depth n in the tree.    Such a vector 

description of the decoder position requires the use of the first  j  vector components to deter- 

mine the position at depth j. 
The algorithm will best be described in connection with the flow chart of Fig. 5.    Every time 

a branch of the tree is tested,  the decoder is situated at the point marked "start."    First the in- 
crement to the metric corresponding to the branch under test is computed and added to the cumu- 

lative metric M  .    The quantity M      . is then compared with the current threshold T.    If M     . :>. 

T,  the branch is deemed satisfactory to the decoder which then follows loop A  and proceeds to 

test a new branch beyond the one just tested.    When the successful branch is under test for the 

first time,  the threshold is raised until it obtains its maximum permissible value below M   , .. ' r n+1 
If the branch has been tested previously,  the threshold should remain at the original level. 

The remainder of the flow chart deals with unsatisfactory branches.    Since the branches 

stemming from a node are tested in order of decreasing metric,  the failure of one branch imme- 

diately implies the failure of all branches at that node for the present threshold.    Therefore,  the 
decoder must return to a previous node to seek a satisfactory branch.   Before testing, if branches 
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Fig. 5.    Flow chart of the sequential decoding procedure (A -*• B indicates: 
set  B  equal to A). 
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from that node are satisfactory,   it is necessary to test the cumulative metric at the node itself. 

If M    < T, the decoder lowers the threshold by T    and then searches to see if there is a path re- 

maining above the new threshold setting.    If M    ^ T,  other less likely branches are tested to see 
if they lead to paths remaining above T. 

The decoder must take care not to raise the threshold on a path that has already been tested. 

The procedure operates by testing thresholds in order of decreasing value,  and if one proves un- 
satisfactory,  no higher threshold should be used until virgin territory is reached.    We see in 

Fig. 5 that F = 0 whenever a new path is followed and that F = 1 whenever one is being retraced. 

F  is set to one whenever a path falls below a threshold T'.    If the threshold is then lowered to 

T' — T  , the decoder will continue to retrace branches already investigated until it finds one that 

exceeds T1 — T    but is below T'.    This is the first new branch to be tested and F is reset to zero, o 
If the decoder does not lower the threshold, but instead backs up to an earlier node with several 

paths above T',  it will search a new path only if one remains below T' + T   .    Otherwise,  the de- 
coder would have raised the threshold to T' + T    when it reached this node for the first time. o 

The operation of the algorithm will be best understood by the reader if he follows its opera- 
tion in typical cases in detail.    Figure 6 is a sequence of display photographs resulting from the 

simulation of the decoder operating on a model of a geophysical exploration problem of the type 
discussed in Sec. II-E.    These photographs illustrate the more important cases that occur during 

the decoder's operation.    This display follows the acceptance of a choice in loop A  of the decoder 

before the threshold is raised for this newly accepted branch. 

H.    Differential Bias Assumption 

In Sec. I-D,  we noted a basic difference in the freedom available in communications for in- 

troducing redundancy and that available in measurements.    In communications,  there is the 

freedom to design the encoder in a way that will make the set of possible transmitted sequences 

as different among themselves as possible.    Once such an encoder is chosen,   certain parameters 

are chosen to optimize the encoder's performance.    The analysis of this performance is usually 
based on the average behavior over the ensemble of parameter values.    We are thus guaranteed 

that there is at least one set of parameters which would provide this average behavior. 

In measurements,  however,  this possibility does not exist.    Although we have the freedom 
to choose the probe signal,  the set of possible transmitted sequences is highly constrained by 

the device being measured.    Consequently,  it could well happen that the various hypothesized 
parameter vectors produce almost identical sequences of noise-free outputs,   no matter how the 

probe signal is chosen.    In such a case,  measurements that would distinguish among the vectors 

would be difficult. 
The notion of coding in communications is different from that in measurements.    In both 

areas,   coding is essential,   since there must be some redundancy in the noise-free data to indi- 
cate to the decoder when it has erred.    Unless an incorrect hypothesis at some point leads the 
decoder to a node in the tree at which every hypothesized output differs from the correct output 

for that tree depth,  the decoder will never be able to ascertain its error.    Otherwise there would 

always be some incorrect path through the tree identical in its output sequence to the correct 

output sequence.    In communications, this characteristic of the tree code is obtained by reducing 

the rate and picking the code words at each node independently and at random.    In measurements, 

the characteristic must be provided by the device under measurement itself. 
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1.    Decoder is in initial state. 2. Metric values for alternatives at first node 
are computed. Path corresponding to highest 
is chosen. 

3.    Repeated at node 2.    Threshold has been 
raised. 

4. At node B, both metric increments 
are negative, but one remains above 
threshold. 

Fig. 6.    Oscillographic simulation output. 
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5. Metric increments at node 4 were computed; 
both caused metric to fall below threshold. De- 
coder then returned to node 3, found that untested 
branch fell below threshold, and then lowered 
threshold. 

6.    With lowered threshold, decoder retraces. 

7.    Branch at node 4 is successsfully chosen. 8.    Branch at node 5 is chosen. 

Fig. 6.    Continued. 
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9.    Branch at node 6 is chosen.    Threshold 
is raised. 

10.    Branch at node 7 is chosen.   Threshold 
is raised. 

11. Branch at node 8 is chosen. Threshold 
is raised. Dropping signal-to-noise ratio is 
becoming apparent. 

12.    Branch at node 9 is chosen. 

Fig. 6.    Continued. 
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13.    Branch at node 10 is chosen.    This branch 

is incorrect.    Threshold is raised. 

14. Branch at node 11 is chosen. Threshold 

is raised. Although on incorrect path, metric 

is increasing. 

15.    Alternatives at node 12 are computed. 

Both cause metric  to fall  below threshold. 

16.    Decoder returns to node 11, where it tries 

untested branch with highest metric increment. 

Fig. 6.    Continued. 
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17. Alternative metric values for this choice 
are computed, both falling below threshold. 
Again decoder returns to node 11 where it 
finds no more untested branches. It returns 
to node 10, finds metric below threshold, 
lowers it, and then tries branch from node 
11 with highest metric value. 

18.   At node  12,   it finds that   both alternatives 
fall below threshold.    Decoder returns to node 11. 

\ / 

\ 

19.    Decoder tries untested branch at node 11 
with highest metric increment. 

20. At node 12, both alternatives fell below 
threshold. Returning to node 11, decoder found 
no more untested branches and therefore lowered 
threshold. Then it returned to node 10 to begin 
search with this new threshold value. 

Fig. 6.    Continued. 
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21.    Search moves to node 11.    Threshold 
remains fixed. 

22.    Branch at node 12 is chosen. 
remains fixed. 

Threshold 

23. Both alternatives fell below threshold 
causing untested (with current threshold) 
branch with highest metric increment to be 
checked. 

24. Both alternatives fell below threshold. 
No untested branches remained at node 11. 
Decoder then returned to try untested branch 
at node 10 with highest metric increment. 
This is correct path at last. 

Fig. 6.    Continued. 
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25.    Branch at node 11 is chosen. 26.    Branch at node 12 is chosen. 

27. Branch at node 12 fell below threshold 
which was raised just after display 26. 
Threshold was lowered again. 

28.    Branch at node 13 is chosen.    Decoder 
is on right track. 

Fig. 6.    Continued. 
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The constraints imposed by the system under measurement become important in another 

way also.    When analyzing the operation of the sequential algorithm,  it will be necessary to con- 

sider the behavior of the metric along incorrect paths as well as its behavior on correct paths. 

Since the metric on the correct path is a function only of the noise samples,  its components are 

independent.    However,  the metric on the various incorrect paths is a function not only of the 

noise samples, but also of the particular incorrect  z values which occur along the incorrect path 
being considered.    Thus,  in the analysis of the metric on the incorrect path, we must take into 

account these  z  values.    Clearly,   such a procedure would be cumbersome since,   in general, 
every incorrect path would have to be considered separately. 

In the analysis of sequential decoding as applied to communications, this problem is avoided 

by a mathematical artifice known as ensemble averaging.    Instead of considering the behavior of 

the metric on the set of incorrect paths for a particular code, we consider the average behavior 
on the set of incorrect paths for an ensemble of codes.    Over such an ensemble, the output sym- 
bols along incorrect paths are independent,  and therefore it is possible to consider all the in- 
correct paths simply.    From such a result,  a particular code that gives results at least as good 

as the average is guaranteed. 

An analogous procedure is not plausible in measurements.    Even if we could consider an 

ensemble of unknown parameters and thereby obtain independence,   it is senseless to say there 
is a set of unknown parameters which could be measured at least as well as an average.    In ac- 

tuality,  we are trying to measure a particular set of parameters and do not care if there is an- 

other set of parameters on which we could do a better job.    We might also consider the ensemble 

of input signals,  but the constraints imposed by the transformation are usually too strong to per- 
mit any simplifications to result among the incorrect output vectors. 

Because the device being measured is not under the observer's control,  we have seen that 

it is possible for two distinct hypothesis vectors to produce similar output vectors and for de- 

pendencies to exist among output values along a path.    Both these features give rise to difficulties 

which must be overcome to proceed with the analysis.    Consequently, we shall make an assump- 

tion,  referred to as the differential bias assumption,  which will permit the analysis to be com- 
pleted and which,  in addition,   is reasonable from an intuitive viewpoint.    Generally,  this assump- 
tion implies that once an error is made in the decoding,  a bias will be produced in later hypoth- 
esized outputs which acts in the same way that the addition of an extra noise source would.    This 
appearance of additional noise in the data will indicate to the decoder that an error was made and 
that a retracing procedure should be started.    The differential bias assumption itself will be de- 

fined precisely in Sec. III-E. 

III.   AVERAGE NUMBER OF COMPUTATIONS 

A.    Introduction 

In this section, we shall compute an upper bound to the average number of times the decoder 

follows loop A of Fig. 5 in decoding a branch of the tree.    This computation is similar to that 

done by Fano.     Since loop  A must be taken for the decoder to move forward,  the number of times 

the decoder follows it is within a factor of two of the total number of computations.    Therefore, 

we shall henceforth define a computation as one pass around loop A.    Note from Fig. 5 that loop 
A is traversed when the decoder is accepting a node one level deeper than the current depth. 

Thus threshold settings discussed in the next section are compared with the value of the metric 

at such a node. 
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We shall see that when there is a sufficient difference between the correct and incorrect 

noise-free data points as seen by the observer,  it is possible to decode a branch of the tree with 

a number of computations that is independent of the depth of the node under consideration.    In 

addition, we shall see that as this difference grows,  the bound on the computations will decrease 

rapidly. 

The bounds that will be derived are computed with the bias constant  R discussed in Sec. II-B 

as a parameter.    The effects of various values for this quantity are shown by means of curves 

derived for the Gaussian noise case. 

B.    Splitting N 

In the consideration of N,   the average number of computations required per branch of the 

decoding tree,  it is desirable to consider separately the average number of computations made 

in each of three circumstances.    Before defining these classes,  we shall introduce the notion of 

a reference node and illustrate in a typical case the role it plays in the computation.    Any node 

along the correct path can be regarded as the so-called reference node.    In the computation of 

N,   we consider all paths stemming from this node and calculate the average number of branches 

along such paths that must be considered.    Once this has been done,  the next reference node and 

all paths stemming from it must be considered in the same way.    Since each node along the cor- 

rect path has a similar set of incorrect paths stemming from it, we can consider the total number 

of computations on incorrect paths stemming from the reference node and the total number of 

computations on the correct branch stemming from the reference node as the total number of 

computations per branch. 
In the remainder of this section,  we shall refer to an incorrect node as a node along an in- 

correct path stemming from the reference node.    All other incorrect nodes will be considered 

when the correct node from which they stem is considered to be the reference node. 

If we recall from Sec. II-G that the threshold takes on values quantized by increments of T  , 
we shall find it convenient to define T . as the highest value of the threshold still below the value 
of the metric at the reference node.    In addition,   since the decoder operates only on metric 
changes, we can choose its reference to be arbitrary.    For convenience, we assume that T = 0 

at the reference node. 
It will be convenient to divide the number of computations to decode one branch into three 

parts.    First,  there will be one computation each time the decoder returns to the reference node 

and tests the correct branch.    Let N    denote the average number of such computations.    Second, 

there are those computations required to consider incorrect nodes when the threshold is set at 
T . and at various levels above T   .    Denote this average number by N. .    Finally,  there are those 

computations required to consider all incorrect nodes when the threshold is set at various levels 

below T   .    We let N.~ be the average number of computations in this category. 

Although it is possible that all the incorrect nodes with metric above a particular threshold 

will be considered by the decoder,   many may not because of the specific way in which the metric 

varies along the path they are on.    To be conservative,  we neglect the existence of such metric 

variations and bound the desired result by one obtained by considering them all.    Thus 

N^: N    + N.+ + N." (1) 
^      C 1 1 x   ' 
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where N   is the average number of computations on the correct branch,  N.   is the average number 

along incorrect paths when the threshold is set at some value above T .,  and N." is the quantity 

along incorrect paths when the threshold is set at some value below T .. 

In the calculation of N,   we neglect the fact that in measurement problems of interest the 

tree is of finite depth and instead we assume that the depth is infinite.    Clearly,  this is an upper 

bound to the average number of computations required for a finite tree,   since the additional depths 

of an infinite tree provide more branches that the decoder may have to investigate. 

In particular,  if the size of the tree is increased, there will be more possibilities in which 

an event causing error could occur.    Thus the number of computations to decode one branch in- 

creases as the size of the tree beyond it increases,  and in the limit the tree can grow to infinite 

size. 

Once the infinite-depth tree is assumed,  it may be noted that the average number of compu- 

tations to decode the correct branch stemming from a reference node is independent of the ref- 

erence node's depth.    This is because the number of computations depends on the behavior of the 
metric along paths stemming from the reference node,  and the composition of the set of such 
paths is independent of the reference node. 

C.    Events Contributing to Partial Averages 

We consider N    first.    Since succeeding branches on the correct path will be considered 

when the nodes from which they stem are regarded as reference nodes,  we need consider only 
the first branch.    This branch will,  of course,  be considered at least once and it will be recon- 
sidered once for each threshold below T  ,  below which the correct path falls.    In particular, the 

decoder will not return to the reference node if the total metric does not fall below T  ,  but will 

do so once for each different threshold value below T    used by the decoder. 
Define P(T) as the probability that the total metric falls below T  somewhere along the cor- 

rect path.    Using this quantity, we can bound N    as 

n 

N   < 1 +   £    PIT) . (2) 

j=0 "    4       ° 

As will be seen later,  and is heuristically obvious,   P(T) decreases with decreasing T.    Therefore, 

oo 

N„^ 1 +   E    P(T)T_   iT . (3) 
J=o        T-JT° 

Next we consider nodes along incorrect paths stemming from the reference node which are 

considered when the threshold is set at a value,  T* >;T        It is possible that all incorrect nodes 

above such a threshold will be considered once for each threshold value above or at T   .    The 

incorrect nodes in this category may or may not be considered by the decoder,   depending on the 
behavior of the metric on the correct path and on the manner in which the metric varies along 
incorrect paths.    To be conservative,  we assume that all nodes above T* ^T    will be considered. 
This is illustrated in Fig. 7(a).    The incorrect path's metric exceeds that of the correct path at 

the reference node and an error results.    Then the threshold is eventually raised to T    + 2T  . 
Before the decoder returns to the reference node,  one computation on the incorrect path will be 

made with the threshold at T . + 2T  , two at T. + T   ,  and two with it at T,. 1 o 1        o 1 
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CORRECT 

(a) Error when metric increases on correct path. 

(b)   Error when metric decreases on correct path. 

INCORRECT 

(b) 

T, +T„ 

(c) Error when metric decreases on both correct 

and incorrect paths. 

T,-Tft 

(c) 

Fig. 7.    Typical metric behavior. 
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Therefore,  we see that if N(T*) is defined as the average number of nodes along incorrect 

paths at which the total metric equals or exceeds T*,  N.   is upper bounded by the sum 

00 

N+<   Z    N(T*)T„,_T . (4) 

j=0 4      ° 

We shall see later that N(T*) increases with decreasing T* so that 

N+^     Z     N(T*)    * . (5) 

Finally, we consider N. , the number of computations made on incorrect paths for threshold 

settings below T  .    Such branches will be considered only if the correct path falls below T    at 
some depth.    In fact,  these branches will be reconsidered once for each threshold value T* < 0, 

for which the correct path falls below T* + T   .    This may be illustrated as in Fig. 7(b).    In this 
example,  one incorrect node will be tried with the threshold at T .,  one at T . — T  ,  and two at f   « 1' 1        oJ 

T. - 2T   . 1 o 
Consequently,  if we define N(T*/T) as the average number of nodes on an incorrect path 

exceeding T* when the correct path falls below T,  we can upper bound N." by the sum 

N.-^    £   N(T*|T)T,=Ti_(j+1)ToP(T)T=Ti_jTo (6) 

j = 0 T=T,-jT 1 J   o 

^    £   N(T*|T) T*-.(i+2)T    P(T>T--iT (7) 
\j     /    0 J   0 

J = 0 T=-jT J   o 

where we have again used the monotone properties of P(T) and N(T*) which will be discussed 

later.* 

The reader may note that if the correct path falls below T ^ T      some incorrect nodes may 

be considered with the threshold setting above T ..    Such a case is illustrated in Fig. 7(c).   Since 
the metric on the correct path fell below T . and also fell below that of the incorrect path shown, 
the incorrect path was tried by the decoder.    At one point,  node  A will be considered for T* = 

T . + T   .    Such a computation would be included in N.    (and also N. ) despite the fact that this path 

would be taken only if the metric on the correct path falls below T.. 

D.    Chernoff Bounds to Probabilities 

The average number of computations has been upper bounded by three sums involving two 

quantities P(T) and N(T*),  the probability of the correct path falling below  T  and the average 

number of incorrect nodes above T*,   respectively.    In this section, these quantities are upper 
11 bounded by means of the well-known Chernoff bound. 

This bound states that if x is a random variable,  F(x) is its cumulative distribution function, 

and y(r) is the corresponding moment generating function, 

t A slight improvement in the bound can be obtained if this monotone condition is not imposed until the summation 
is performed. 
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then 

and 

y(r) = I erx dF(x) 

F(x)^y(r) e~rx      ,       any r ^ 0 (8) 

1 - F(x)^y(r) e"rx      ,       any r ^ 0      . (9) 

These inequalities have been extremely valuable in the analysis of sequential decoding of tree 

encoded messages and we shall find them very useful here as well. 

Let Pk(T) = Pr(M,   < T) be the probability that the value of the metric M,   at the kth node be- 

yond the reference node on the correct path is smaller than some value T.    We observe that on 

the correct path the metric increment is R + lnp  (n.),  where n. = y. - z..    Thus the behavior of 

the metric on a correct path depends only on the noise samples. 

Let 

That is, 

(k) Let y     '(r) be the moment generating function of the metric on a correct path of length k. 

Yc
(k)(r) = j\ ..£   El   pn(n.) exp   r    £   [R + lnpn(n.)] dn1---dnk (10) 

where p (n.) is the probability density function of the noise.   Then the Chernoff bound implies that 

Pk(T)^yc
(k)(r) e"nT= exp{jxc

(k)(r)-rT}     ,      r^O (11) 

where 

Hc
(k)(r) = lnyc

(k)(r)      . 

Next we turn to N(T*) which was defined in Sec. III-C as the total number of incorrect nodes 

above T*. Let P, (T*) be the probability that the value of the metric M? at the k node along a 

particular incorrect path stemming from the reference node exceeds a value T*.    This quantity 

depends on the particular incorrect path under consideration. 
k-1 We now note that if we consider  D quantization levels there is a total of (D — 1) D        com- 

pletely incorrect paths of length k stemming from the reference node.    Let P,    (T*) be the largest 

P, (T*) of those computed for all these incorrect paths.    Then the average number of incorrect 

nodes at depth  k exceeding T* is given by 

k-1 
(D-1)DK   1 

N, (T*) = 2J Pr      (metric on i     incorrect path of length 
._ . k exceeds T* ) 

Since Pk(T*)^< P^T*) for all incorrect paths it follows that 

Nk(T*U P™(T*) •   (D- l)Dk_1       . (12) 

But the Chernoff bounding procedure allows us to upper bound P.   (T* ).    Note that 

Pn(yJU;) = Pn(yj-Z*) = PnUj-Z;+nj)    . 
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(k) 
Let y.     (t) be the moment generating function of the metric along the incorrect path of length k 

giving rise to P.    (T*) 

K .       K 

7i(k)(t) = I'--I  n   pn(n.)expt E   [R + lnp^ - z* + n.)] 
j=l j=l 

dn1...dnk (13) 

where p_.(n.) is the probability density for the j     one of the k independent noise samples,   z. is 
th   n   J * th J 

the j     noise-free output on the correct path,  and z:   is the j     noise-free output on the incorrect 

path giving rise to the maximum P,(T*),   P^fT*).    Then by the Chernoff bound 

P™(T*)^y.w(t) e"11 ,       foranyt^O (14) 

so that combining Eqs. (12) and (14) 

Nk(T*)<; (D- l)Dk_1 y.(k)(t) e"tT*       . (15) 

N(T* |T) can be bounded using a similar technique.    Let 

P. |   (T* |T) = P  (M* ^T* |M    < T) k|n        ' r     k '        '    n        ' 

be the conditional probability that the value of the metric M* at the k     node along a particular 

incorrect path stemming from the reference node exceeds a value T* when the metric M    at the 

n     node along the correct path falls below T.    This quantity depends on the particular incorrect 

path under consideration. 
k-1 As before,  we note that there are a total of (D — 1)D        completely incorrect paths stemming 

from the reference node.    Let P, i   (T* |T) be the largest P. i   (T* |T) of those computed for all k | n k | n r 

these incorrect paths.    Then the same procedure can be employed by assuming that 

P, I   (T* |T)^ P,m  (T* |T)      . (16) k|nv       '    '^     k|nv       ' *     ' 

for all incorrect paths.    Therefore, the average number of nodes along incorrect paths of length 

k above T*,  given that the correct path is below T  at depth n,   is bounded by 

N, I   (T* |T)x: P,m  (T* |T) .   (D-l)Dk_1      . (17) k|nx      '      ^     k|n        '    '     * ' v 

U we now multiply both sides of this inequality by P  (T) we obtain 

Pn(T) Nk|n(T*|T)<C Pr(Mn<T1M* ^T*) •   (D-l)Dk_1       . (18) 

It is worthy of note that the right-hand side of this expression is also an upper bound to the joint 

probability that M    < T on the correct path and that there is at least one node at distance  k along 

some incorrect path stemming from the reference node for which M* ^.T*.    This bound is due 

to the fact that the probability of a union of events is upper bounded by the sum of probabilities 

of the individual events. 

To further bound this joint probability,   we can employ the Chernoff bound in two dimensions. 

Note as before that 

D (y. I z.) =   n (y. — z.) =   D (n.) 
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and 

when 

P (y|z*)=   p (y. - z*) =   p (z.-z* + n.) 

n. = y. — z. 

(n,k), Let y.   '     (r,t) be the joint moment generating function of the metric on the correct path of length 

n together with the metric on the incorrect path of length k leading to the maximum P, i   (T* |T), 

P"l   (T* |T).    That is, 
K I n. 

^i(n'k)(r't) = I---In pn
(nj)exp r Jj   [R + lnpn(n .)] 

+1 Y [R + lnpn(zj -zj*+ nj)i dn.. . . dn, 1 k (19) 

if k >, n,  t ^ 0,  and r ^ 0,  and 

n .     n 

y.(n'k,(rtt) = J...J   II   Pn(nj) exp r  £   [R + In pn(n.)] 

k * 

+ t  YJ   [R + In Pn(z. - z*  + n.)] dn^ . . diij 

if k<<: n, t^O,  andr^O.    Then 

Pr(Mn < T, M*  > T*)<<y.(n'k)(r,t) exp{-rT -tT*} 

(20) 

(21) 

for t > 0 and r<<: 0. 

Before proceeding further in the calculation,  we make an assumption about the incorrect 

paths in order that all possible incorrect paths will not have to be considered individually. 

E.    Differential Bias Assumption 

The calculation of the moment generating functions defined in Eqs. (19) and (20) is complicated 

by the dependencies that exist between the metric values on the correct path and those on the in- 

correct path,  and by dependencies existing along incorrect paths.    Indeed,  it does not appear 

that their computation is tractable without some simplifying assumption.    In this connection,   it 

may be noted that for an incorrect decision to be discovered,  its consequences must produce an 

observable discrepancy between the true noise-free data vector and the hypothesized noise-free 

data vector.    Because of the analog nature of the noise effects under consideration,  this discrep- 

ancy must appear as an arithmetic difference in at least some of the vector components depending 

30 



3-22-5970 

Fig. 8.    Differential bias assumption. 
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on differing hypotheses.    Thus the effect of an erroneous decision is to produce a bias in the data. 

With these remarks as motivation,  we make the following assumption': 

On all incorrect paths,  each incorrect output value z* differs from the 
corresponding correct output value z^ by at least a constant  6.    More pre- 
cisely,   | Zi — z* | > Ö for all incorrect branches. 

We shall see that under this condition,  the moment generating functions can be calculated with- 

out regard to the dependencies existing along incorrect paths. 
A geometric interpretation of this assumption is readily obtained.    Consider the noise-free 

data vector of each possible tree path of length  n as a point in n-dimensional Euclidean space. 
The above assumption implies that the components of each incorrect point differ by at least  6 

from the corresponding components of the correct point.    This is illustrated for two dimensions 

in Fig. 8. 

F.    Moment Generating Functions 

Under the differential bias assumption,  several simplifications in connection with the re- 
(k) quired moment generating functions occur.    We first consider ö     '(r).    By taking advantage of 

the independence among noise samples,  we obtain 

t This assumption was recently weakened to the requirement that 

I    |z.-z*|  >k6 
i-1      '       ' 

for all incorrect paths of length k where the summation extends over the incorrect portion of the path.    The cal- 
culation of the moment generating functions under this weakened assumption is sketched in Appendix C.    For 
Gaussian white noise, the differential bias assumption can be weakened to 

I (z. - z*)2 > kS2 

i=l    '       ' 

for all incorrect paths. 
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yc
(k)(r) = E /exp    r   £   [R + In p^ I z.)]   j       , 

\ j=i 1/ 

r^: 0 

= erkR {E [p(n)r]}k 

rkR     k,   v 
= e y, (r) 

where 

7l(r) = E [pn(n)r] 

(22) 

(23a) 

Thus it is sufficient to calculate v. (r) which depends only on the probability density function for 

the noise. 

In dealing with y.     (t) andy. n'     (r, t),  we shall show that the corresponding true moment gen- 

erating functions are upper bounded by generating functions calculated under the differential bias 

assumption alone.    Thus,  although these moment generating functions were defined by Eqs. (13), 

(20),  and (21) along specific paths,  they are upper bounded by moment generating functions in- 

dependent of the particular incorrect path.    In addition,  dependencies along incorrect paths due 

to the internal constraints of the transducer are removed from consideration.    This upper bound 

is made explicit by the following theorem. 

Theorem. 

If we define 

(In Y2(t) = j  Pn(z + n|z) pn(z + n|z + 6Q)t 

and if p  (y/z) is a symmetric,  monotone-decreasing function of |y — z| =   |n|, 

72(t) > J   pn(z + n | z) pn(z + n | z + Ö)1 dn 

(23b) 

(24) 

if ö > <5    and t > 0. 
o 

Proof. 

By assumptions described in the theorem,  p  (y/z) = p  (n) is a monotone-decreasing sym- 

metric function of |n|.    But a positive power of such a function is also of the same type.    Hence 

by Lemma 2 in Appendix A,  the theorem is proved. 
(k) 

Turning now to y.     (t),  we again use the independence of the noise samples.    From Eq. (13), 

we have 

y/k)(t) = E / exp    t   YJ   [R + lnPn(zj - zj*  + nj)l    )       •       t:^c 

k r      k 

J---J    n   Pn(nj)exp   t    £ lnpn(z.-z*+n.) dnl--'dnk 

32 



y (k)(t) = etkR j      J   jj   pn(n_} pn(z_ _ z* + n_)t dni       % 

k 
tkR 

e 

<: etkR y?
k(t) (25) -c 

where 

72(t) = j  pn(n) pn(n + Ö)1 dn      . (26) 

(k) The inequality follows from the theorem expressed by Eq. (24).    Thus y.    '(t) is bounded by a 

function dependent only on the noise probability density function and on the constant Ö,  introduced 

by the differential bias assumption. 

In the same way y.    '    (r,t) can be shown to be bounded by a function depending only on the 

probability density function of the noise and on the constant  Ö.    From Eq. (20) 

k .     n 

Y.(n>k)(r,t) = y...£   n   Pn(n.)exp   r   £  [R + lnpn(n.)] 

3=1 j=l 

+ t   YJ   [R + lnpn(z. ^z* + nj)]     dnr.. dnk 

j=l 

= expjnrR + ktR} y . . |   ]J   Pn(n.)1+r pn(z. - z* + n.)1 dn^ . . dnn 

c    r   k 
x)...)      n     Pn(nj)pn(zj-z;+n.)tdk+1...dnk 

j=n+l 

<C exp (nrR + ktR} y "(r, t) y k~n(t) (27) 

for k :>, n,  t ^ 0,   r >£ 0,  where 

y3(r,t)^| pn(n)1+r pn(n + Ö)1 dn (28) 

and Y2(t) is defined in Eq. (26).    If n ^. k,  Eq. (27) is replaced by 

y.(n'k)(rft),sexp{nrR + ktR} yk(r,t) y *"*<!•) (29) 

where y . (r) is defined in Eq. (23a). 

The fact that a different bound obtains in the two cases will make later computations very 
12 laborious.    However,  a simple application of the Schwartz inequality      gives us an upper bound 

that is common to the two expressions above.    This bound is derived in Appendix A as Lemma 1 
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and indicates that we can define two functions,  each of which is simply related to the pertinent 
moment generating function in the following manner: 

y^r) = [y^r)]1/2 

,1/2 y2(t) = [y2(2t)] 

Then 

y3(r,t)^y'1(r) y^(t) 

y2(t)^y^(t)      . (30) 

Applying these bounds,  we obtain from Eqs. (27) and (30) the following bound to y. (r, t) 

which holds for all values of n and k. 

y.(n*k){r,t)^exp{nrR+ ktR} [y^r)]11 [y2(t)]k (31a) 

and r^: 0 and t ^ 0. 

Hence we can deal with y,(r) and Y2(t) which depend only on the noise density function and 

the constant  6.    It will be convenient to define 

Hi^r) = lny^r) = InE [pn(n)r]      ,       r^O 

and 

HL2(t) = lny2(t) = InE [pn(n + Ö)1]       ,       t^O (31b) 

so that from Eqs. (31a) and (31b) 

Yjk'^Cr.t)^ expjn [rR + | ^(21-)] + k [tR + | K2(2t)]} (32) 

for r^ 0 and t > 0. 

Now that we have discussed the moment  generating functions and have introduced the differ- 

ential bias assumption,  we can return to the main objective,  that of bounding P(T),   N(T*),  and 

N(T* |T),  the probability that the metric on the correct path falls below T for some depth,  the 

average number of incorrect nodes along all incorrect paths for which the metric exceeds T*, 
and the same quantity conditional on the correct path's falling below  T.   Since the probability of 

a union of events is less than or equal to the sum of the individual events,  we can upper bound 
these quantities by the proper sums over  n and  k.    Thus 

OO 

P(T)^:    YJ    pn(T) (33) 
n=i 

oo 

N(T*U    YJ    Nk(T*) (34) 
k=l 
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OO 00 

N(T*|TU    £      £    Nk/n(T*|T) Pn(T) (35) 

k=l  n=l 

where P  (T) is the probability that the correct path is below T at depth n,   N, (T*) is the average 

number of nodes along incorrect paths at depth k which exceed T*,  and N. i   (T* |T) is the aver- 
K. | n 

age number of nodes along incorrect paths at depth k which exceed T* when the correct path 

falls below T  at depth n,   as discussed in Sec. III-D. 

G.    Performing the Sums 

The contents of the previous sections can be summarized by indicating three summations to 

be performed.    Combining Eqs. (3),   (11),   (22),   (30),   and (33),  we obtain 

OO OO 

Nc^l+    £     E    expjn [rR + | M.1(2r)] + jrTo} 

j=0 n=l 

OO OO 

= 1+    E     E    exp{jrTo + na(r)}       ,       r<C 0      . (36) 

j=0 n=l 

a{r) = rR + | i^Ur) 

From Eqs. (5),   (15),   (25),   (30),   and (34),  we get 

OO 00 

Nt<:     E      E    (D- l)Dk_1 exp{k [tR +  | M.2(2t)] -jtTo} 

j=-l   k=l 

OO OO 

D - 1 
D^      E      E    exp{-jtTQ + k [tR +*| n2(2t) + InD]} 

j = -l   k=l 

00 OO 

D - 1 
D"*     E      E    exp{-jtTo + k/?(t)}       ,       t^O (37) 

j=-l  k=l 

ß(t) = tR + j n2(2t) + InD 

Finallyby considering Eq. (7) and successively substituting Eqs. (18), (21), (32), and (35), we obtain 

OO OO OO 

Nj>    £     E      E   (D-l)Dk_1 exp{jrTo+ (j+ 2)tTo+n[rR+ | hx1(2r)]} 

j=0  k=l  n=l 

x exp{k [tR + -| |i2(2t)]} 

OO 00 

= ^TT   E    E    exp{(j + 2)tTQ+k[tR+ I »i2(2t) + lnD]} 
j=0 k=l 

K 

x    E    exp{jrTo + n [rR + | Fx1(2r)]} 

n=0 
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i D 

where 

E     E    exp{(j+ 2)tT    + kj8(t)}    Z    expflrT    +no(r)} 
j=0 k=l n=0 

(38) 

ß(t) = tR + y ^L2(2t) + InD t > 0 (39) 

and 

a(r) = rR + \ n^r) r .< 0 (40) 

and (Ji-(2r) and nu(2t) are given in Eq. (31b). 
The parameters  r and t appearing in these summations were introduced in the Chernoff 

bounds to terms that have been combined in the calculations.    It is not necessary,   nor is it de- 

sirable, that r and t be chosen the same for all these terms,  but rather each of these param- 

eters should be chosen to minimize the bound.    Thus the optimum  r and t are really functions 

of the summing indices j,   k,   and n. 

Because of the arithmetic complications produced by complete optimization,   it is desirable 

to pick only two values for r and two for t.    Thus we choose 

n < n. 

n > n. (41) 

and 

t = 
k < k. 

k >>k 
1 

(42) 

Since the exponent in Eq. (38) is dominated by the terms independent of n  and  k when  n and  k 

are small,  we shall choose r    and t    such that the coefficients of n and k are each zero.    Then, o o 
as  n and k increase beyond n    and k  ,   respectively,  and this term becomes more important, 

we shall choose r . and t. to minimize the coefficient.    More precisely,   r  ,   r .,  t  ,  and t. are 11 K J'     o      1      o' 1 
chosen to satisfy 

a(rQ) = 0 

ß(t0) = 0 

a'O^) = 0 

/S'^) = 0 

(43) 

(44) 

(45) 

(46) 

In addition,  n. and k. are chosen as those values of n and k for which the bounds obtained using 

r    and t    just exceed those obtained using r, and t.. o o J 6    1 1 
That is, we choose n such that the term corresponding to n = n — 1 is smaller for r = r 

than for r = r., whereas the term corresponding to n = n. is larger for r = r than for r = r.. 

Thus 

ir T   X (n. - 1) a(r.) + ir.T Joo^l 1       Jlc (47) 
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jr0T0>n1o(r1) + Jr1T0     . 

That is,  n, is defined as an integer satisfying 

i(r    - r.) T i(r   - r.) T JX o        1'    o  ^       ^       o        1      o 
CK(r1) 

> n1 < 
a(r4) 

+ 1 

(48) 

(49) 

for jT    > 0 and n. = 0 for jT    =0.    Similarly,  we define k. as the integer satisfying 

j(t   -tj T j(t   -tj T J   o       1      o ^.      . J   o       1      o      , 

for jTQ > 0 and k1 = 0 for jT    = 0.    Therefore, 

exp [n^ (r4) + j^TJ ^ exp [j^Tj 

and 

explk^) + jt1To]^ exp[jtQTo]      . 

(50) 

(51) 

(52) 

We shall carry out the summations first,  and then discuss the conditions under which solu- 

tions can be obtained. 

Nc^i+   Z 

J=o 

vi 

Z      exp[jrQTo] +      YJ     expljr^ + nafr^l 

n=l n=n,, 

Using Eq. (49) and the relation 2 x1 =  l/(l - x), 

Z    U   I    °    /   \     °1  exp[ir T  ] + V-?—Tf    exp[j u   y   |       «(r^       J       FLJ  o   oJ        l-exp[a(r  )]l       K LJ N   X 1 + 
c^ r T   ] 

j=0 

Next,  using the relation 2 ix   = x/(l — x)  , 

N   X 1 + c^ 

r,+ 

(r    -r,) T v o        1'     o 
r T 

„. o   o 

a(rj / r T  v2        r a r, l   , r T   \ 1 (l-e °   °) [l-e       4J   (l-e °   °) 
(53) 

In the sum for N. ,  we note that except for the first term,  we are dealing with positive thresh- 

old values.    Thus the bound describing the choice of k. is not valid and instead we use a single 

value of t, t2,  for all nonnegative values of j.    The final bound can thus be optimized over this 

additional parameter.    Thus,   from Eqs. (37),   (42),  and (50), 

N+^ ^=^   fexp[toTo]    (k1 - 1) + exp[t1TQ + k^)]    Z    explk/?^)! 

^ I k=0 

0 00 v 

+     Z     exp[jt2To]    Z    exp[k0(t2)|J 

j=-oo K=l ' 
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(t   -tJT exp[toTo] _+ D-i /   r+    %-v xo. ; 
Ni   =      D      PW  "     ßitj     ~+ {l-expißit^}} 

 exp[ß(t2)] \ 
+  {l-exp[-t2To]} {l-exp[/3(t2)]}/    ' 

(54) 

Finally,  from Eqs. (38),   (41),   (42),   (49),  and (50) as well as the relation S i x   = x(l - x)/(l - x): 

ST"    .    D-   1 

j=0 

krl 

^    exp[(j + 2)toTQ] +      YJ    exp[(j + 2) t1TQ+ ^(t^] 

k=l k=k 
1 

nrl 

YJ     exp[jroTo] +     YJ    expljr^ + nad^)] 

I n=l 

D-l[        .,f  _   ,   (ro-rl) ^-y      2 exp[(to + ro) TQ] (1 + exp[(tQ + rQ) TQ]) 

— [~P<W a(ri,,(tl, To {l_exp[(to + ro)To]}3 

/ (r   -r.)(t    -t.)      ,      exp[2t  T   ] (t    -t,)T 
,  (? „vr^ r ?+ T  l      °       1      o       1    T2 ,       Kl    o   oJ    o       1      o 
r      Pl    oV airjßitj o {l-exp[a(ri)]} ßdj 

(r„-rJT„ x exp[(t    +r)T] + 
(ro-rl)To \ exP[(to+ro)To| /2 exp [2^) (tQ -t,) 

«<«-,) {1-expWt,)]}/   {l_exp[(to + ro)To]}2+^    <* " exP [a(rl)]> ^(tl 

+  {1 - exp[a(ri)]} {1 - expl/J^)]}/ {l - exp[(tQ + rQ) TQ]}\ 
(55) 

if a(r   ) < 0,   0(t   ) < 0,   and t    + r    < 0. 

We shall see that these conditions on r., t .,  r  ,  and t    place restrictions on the range of 
2     2 

the ratio 6  /ff    that permits convergence of the sums.    If these conditions can be satisfied,  we 

shall have shown that the number of computations for decoding one branch is bounded by a 

constant. 

H.    Existence Conditions 

It remains to show that solutions to the equations 

a(r   ) = 0       r    < 0 

ß(to) = 0     to > 0 

«'(r^ = 0      ri < 0 

|8,(t1) = 0       ti > 0 

exist in such a manner that 

r    + t    < 0 o       o 
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Fig. 9.    Typical a(r) behavior. 

We deal first with a(r).    It must be shown that a(r) has the appearance of curve A of Fig. 9. 

That is,  there is an r    < 0 and an r . < 0 such that o 1 

of(ro) = 0 

and 

Q',(r1) = 0 

We shall show that a'(0) is positive for noise powers less than some critical value,  that 

a (r) is convex upward,   and that a(r) takes on a positive value for r > — l/2.    These conditions 

provide the desired result. 

Some of the properties of a (r) are easily calculated.    From Eqs. (23a),   (31b),  and (40), 

a(r) =  j In \  p  (n) dn + rR 

a(0) - 0 

a(-2> = " 

unless p  (n) = 0 for some interval of nonzero length.    From an engineering standpoint, this is 

impossible since some noise will always be present and should be included in any realistic model. 

Further, 

a'(r) = R + 
f p(n)       r lnp(n) dn 

/p(n) 
l + 2r dn 

a'(0) = R + \  p(n) lnp(n ) dn = R -H(N) 

If R  exceeds H(N), the entropy of the noise,  then a'(0) will be positive.    a(r) is convex upward: 

2 / p(n)1 + 2r [lnp(n)]2 dn .   / p(n)1+2r dn 
a"(r) = 

- 2 

[/p(n) 
l+2r   ,  ,2 dn 

Jp(n)4+2r lnp(n) dn 

/P(n) 
l + 2r dn 
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Application of the Schwartz inequality to the numerator gives the desired result that aM(r) ^ 0. 

Lemma 3 in Appendix A provides the proof that r    and r    do exist. 

Turning now to ß(t), we obtain several of its properties: 

,21 ß(t) = tR + j In \  p(n) p(n + 6)"1 dn + In D 

ß(0) = InD 

/3'(t) = R + 
/ p(n) p(n + 6) X lnp(n + 6) dn 

0"(t) = 

J p(n) p(n + 6)      dn 

2 / p(n) p(n + 6)2t [lnp(n + 6)]2 dn ■   / p(n) p(n + 6)2t dn 

l/p(n) p(n+ or1 dn] 

- 2 
/p(n) p(n + 6)Zt lnp(n) dn' 

/p(n) p(n + <5)2t dn 

Again applying the Schwartz inequality, we have the result that /?"(t) ;> 0. 

3-22-5972 

Fig. 10.    Typical ß(t) behavior. 

These properties of ß(t) show that it has one of the three forms illustrated in Fig. 10.    As 

this figure points out,  only form C satisfies the conditions 

and 

ß(tQ) - o 

0'(t4) = o 

t    > 0 
o 

tt>o 

Unfortunately,  the specific form of p(n) must be considered before it can be definitely estab- 

lished that /3(t) has form C.    In addition, the requirement that t    + r    < 0 cannot be established. 

We therefore turn to a specific form for p(n),  the Gaussian form,  which will be studied in detail 

because of its practical interest. 

I.      Gaussian Noise 

Since Gaussian white noise is that most commonly encountered in practice,  we shall discuss 

it in detail.    The noise vector has independent components each determined according to the prob- 

ability density function 
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Pn(n) = (2TT(T
2
)"

1/2
 exp[-n2/2a2]      . (56) 

Using this density function, the various moment generating functions can be computed by simple 
integration.    From Eqs. (23a) and (23b), 

7l(r) = |p(n)1+r dn 

- \      (27ra2)"(1 + r)/2 exp[-n2(l + r)/2a2] dn 

= [(27ra2)r (1 + r)]"l/2 (57) 

y2(t) - j  p(n) p(n + ö)1 dn 

- I      (27rcr2)'(1+t)/2 exp{-[n2 + t(n + 6)2]/2a2} dn 

= [(27r(T2)t (1 + t)]"1/2 exp[-62t/2(72(l + t)] 

Thus,  using Eqs. (39) and (40), 

(58) 

a(r) = r(R - | ln27ra2) - | ln(l + 2r) (59) 

and 

ß(t) = t(R- \ ln27ra2) - \ In (1 + 2t) =-^    + In D      . (60) 
4 2a   (1 + 2t) 

Because of the transcendental nature of these equations,  it is not possible to solve them ex- 

plicitly for r    and t  .    However,   solutions can be found for r. and t.. v J o o * 11 

1 -2C 
rl 4C 

1 ± ^/8CSTl\ 
'.-**(J 8C 

where 

and 

C = R - | ln27T(72 

b -      2 

Although it will not always do so, the positive term in the brackets is the only one which can lead 

to a positive t, for positive  C and S. 
It was not possible to obtain closed-form conditions under which /3(t   ) and t    + r    are nega- 

tive.   In view of these difficulties,  as well as the complexity of the bounds to N  ,  N. ,  and NT, 
we have plotted the bounds as a function of R - \ In Zno  ,  the value of the metric when the noise 
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sample is zero.    The three bounds,  as well as their sum N,   are plotted in Fig. ll(a-d), with the 

ratio 6 /a    as a parameter.    In plotting these curves,   D was set equal to  2 and T    was chosen 
2 ^ to be one-half the constant R — ■§ In 2-nu  .    These curves will be discussed in the next section. 

J.     Summary 

The results of this section can be summarized in the following theorem: 

Theorem. 

If D-level,   sequentially involved parameters are decoded from data perturbed by additive 

noise with probability density given by p(yjz),   a monotone-decreasing symmetric function of 

|y — z|, and if each noise-free data point along an incorrect path differs from the corresponding 

noise-free point on the correct path by at least ö,  the average number of computations to decode 
a branch is bounded by the sum of the three expressions for N ,  N. ,  and N.~ given in Sec. III-G. 

The fact that this bound is a constant,  independent of the depth of the reference node,   indi- 

cates that as long as the conditions of the theorem hold,  the average number of computations for 
decoding a branch is fixed for all depths. 

To better understand the bounds calculated in this section, we discuss them in detail for 

Gaussian noise.    We see in Fig. 11(a) that the number of computations for decoding correct 

branches that stem from the reference node is small whenever the bias constant,  R - \ In 2nv  , 

is large,  and is very large whenever the constant is small.    This is due to the fact that whenever 

the bias is too small,  the correct path will always be negative and will therefore appear like an 

incorrect path to the decoder.    Since considerations along the correct path do not involve points 
along incorrect paths,  the distance of these paths from the correct one does not enter the bound. 

The contribution to the average number of computations along incorrect paths,   when the 

threshold is above — T  ,   increases with the bias constant and does so more rapidly as 6  /a   in- 

creases.    This is seen in Fig. 11(b).    If the bias constant increases,   more incorrect nodes will 
belong to this group and will appear correct to the decoder.    If 6  /a    is small,  the correct path 

will look very similar to the incorrect paths,  and many branches will be traversed before con- 

ditions bring about a return to the correct path. 
Finally,  we consider the average number of computations along incorrect paths when the 

threshold is below —T   .    When the bias is small,   most of the incorrect will belong to this group, 

and if it is very small the correct path will also be decreasing, thereby causing these incorrect 
paths to be investigated frequently.    Thus there is a sharp increase in N.~ for small bias,  as can 
be seen in Fig. 11(c).    If the bias constant is very large,  an incorrect path in this category would 
be investigated only if a very large noise sample occurs.    In the event that it does occur,  very 

many computations would be needed to overcome it,  especially if Ö /a    is too small. 
In Fig. 11(d),  the composite curves are plotted.    The choice of the bias constant does not 

2     2 m to be too critical,  so long as Ö  /a    is : 

sitivity of N to the bias constant increases. 

2     2 seem to be too critical,  so long as <5  /a    is not too small.    As this quantity decreases,  the sen- 

IV.   PROBABILITY OF ERROR 

A.    Introduction 

In this section, we shall compute a bound to the probability of reaching an incorrect terminal 

node that is satisfactory to the decoder.    We shall see that it decreases exponentially with W,  the 
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(a) N    vs bias constant. 

(b) N. vs bias constant. 

3-22-5974 | 

Fig. 11.    Behavior of  N and its components vs bias constant. 
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(c) N.  vs bias constant. 

1 3-??-59T< 1 

82/«r2-IOO 

(d) N  vs bias constant. 

Fig. 11.    Continued. 
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length of the tail,  and that the exponent improves as the incremental bias  ö increases for a fixed- 
probability density function.    The error-probability bound is derived with the bias constant as a 

parameter,  and the effects of varying it are considered by means of curves derived for Gaussian 

noise. 

B.    Events Leading to Errors 

Recall that in Sec. Ill we introduced the notion of a reference node,  and computed the average 

number of computations required to accept the correct branch stemming from it.    The finite size 

of the tree was ignored,  since the infinite size case provided an upper bound and was simpler to 

consider.    However, the finite size of the tree could cause the decoder to complete the hypothesis 

vector along an incorrect path before the metric on the incorrect path has begun to fall.    Conse- 

quently,  the finite size of the tree plays a role in producing errors and must be considered when 

calculating the error probability. 
In this consideration of the finite tree, the nodes along the correct path are no longer homo- 

geneous.    Therefore,  each correct node must be considered separately,  and the theorem on the 

probability of a union of events must be used to bound the total error probability.    As before, we 
consider each node along the correct path as the reference node separately.    Because of the in- 
homogeneity of the nodes along the correct path, we must define T At) as the highest threshold 
below the metric value at the reference node for depth  I.    Since we are again considering only 
changes in the metric, we may arbitrarily choose its reference.    For convenience, we choose 

the metric to be zero at the reference node.    Thus —T    < T   (I) ^ 0. 
There are two situations from which errors can arise. Suppose, first, that there is an in- 

correct path leaving the correct path at depth t with a metric which remains above T.(l) for the 
entire tree duration after depth t, and that this path is tested by the decoder before the correct 

one. It is clear that this path will appear satisfactory to the decoder regardless of the behavior 

of the metric on the correct path. Unless the metric on a path under test falls below T .(I), the 
decoder will never return to the node to change its incorrect decision. 

Let Q    be the probability that there is an incorrect path remaining above T At) for all depths 
+ greater than t.    Let Q    be the total contribution to the error probability by situations of this 

type.    Since the probability of a union of events is bounded by the sum of the probabilities of the 

individual events,  we have 

L 

t = l 

The other situation resulting in error takes place if the metric on the correct path at some 

node beyond t   falls below a threshold value T^ T.(t).    If the correct path falls below  T and 

there should be an incorrect path leaving the correct path at node  t   and remaining above T — T 

until the end of the tree,  difficulty might arise.    For when the metric on the correct path falls 
below some T,  other paths will be tried until one is found which is above T - T   .    Such a path 
will be followed until it falls below T — T   .    If it does not,  an error will occur. o 

Define,  therefore,  Q ~ as the probability that the metric on the correct path starting at depth 
I   falls below some threshold value T^ T.(£) and that there is an incorrect path leaving the cor- 

rect path at depth I   with metric remaining above T — T   .    Then,  using the theorem on the prob- 
ability of a union of events, we bound the total contribution to the error probability from this 

second error situation Q    by the sum 
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I, 

* = i 

Finally, the total error probability is bounded by the sum of the two contributions so that 

Pe^Q+ + Q"      . (63) 

C.    Chernoff Bounds 

First, we shall compute a bound to Q. ,  the probability that there is some incorrect path 

with a metric remaining above T   (/) for the entire tree duration.    We consider the probability 

that a particular incorrect path remains above T   (i),  using for the computation that path most 

likely to remain above T   (/).    We can then multiply by the number of paths to obtain a bound on 

the desired probability for some path.    This is the same procedure used in the calculation of N. 

For the particular path used in the computation,  we desire the probability that its metric 

remains above T   (I) at depths  I,  t   + 1, . . . , L.    This is the intersection of the events that the 
metric is above T   (£ ) at each depth individually.    However,  the probability of an intersection of 

events is upper bounded by the probability of any one of the composite events.    Since the prob- 

ability that an incorrect path is above T* at depth  k decreases with increasing k, we choose as 
the event in this bound the one corresponding to depth L + W,  where  L  is the depth of the tree 
and W  is the number of observations remaining after the last node has been reached.    Conse- 
quently, 

Q/^PW+L-* [T1(')] *   (D-DD1^-1 (64a) 

where P^+T    . [T.(f)] is the probability that a particular path,   composed of W + L - /   incorrect 

noise-free data points differing from the correct noise-free data points by  <5,  remains above 

T   (I).    If we recall that P*    ,    , (T) increases with decreasing T, we can eliminate T   (i ) by 
the inequality 

PW+L-ilTl«»«PW+L-!«-To'      • (64b) 

But we have bounded P*^+L     (T) in Sec. III-D.    Thus,   from Eqs. (14),   (25),   and (64b) 

PW+L-|[T1U)J WW+L_i) (t) exPltTo] 

^yW+L-/(t) exp{t [(W + L_|} R + T^]} (65) 

We now turn to Q   ,  the probability that the correct path falls below T . and that some in- 

correct path starting at depth  £   falls at most T    below the smallest value to which the correct 
path falls.    This quantity is bounded by the sum over  T  of the conditional probability Q ~(T) that 
the correct path falls below  T while some incorrect path remains above T - T  ,  that is 

Q/^    E   Q/fl^-JT,)      • (66) 

LJ-1 -1 Again we consider there are (D - 1)D incorrect paths with lower probabilities than 

those on a particular incorrect path,  and again we assume that the noise-free data points on this 
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particular path differ from those on the correct path by  ö  at all time intervals.    By the same 

reasons used earlier, 

L+W-I 

Q;(T)^(D-l)DL"i-1       YJ Pr(Mk<T      ,       M*+W|^T-To) (67) 

k=l 

where the summation is a bound to the probability that the correct path falls below  T for some 

depth beyond I   and the particular incorrect path remains above T — T    for all depths beyond I. 

Finally,   we can employ the Chernoff bound to the summand obtained in Sec. III-D.     From 

Eqs.(67),   (21),   and (27), 

L+W-I 

Q^'(T)^ (D- 1)DL-*-1      YJ        yi
<k-L+W"l)(r,t) exp[-rT-t(T-To)] 

k=l 

L+W-I 

^(D-l)D^-1      E        y3
k(r,t)y2

L+W-<-k(t) 
k=l 

x exp{r(kR - T) + t [(L + W - I - k) R -T + T   ]}       . (68) 

In the next section,   we consider these sums. 

D.    Carrying Out the Sums 

The results of this section can be summarized by the two inequalities.    From Eqs. (61), 

(64),  and (65), we obtain 

L 

Q+^    E    (D - l)DL"i_1 v2
W+L"f (t) exp{t [(W + L - f) R + TQ]}       ,       t^O (69) 

1 = 1 

and,  from Eqs. (62),   (66),  and (68),  we conclude that 

L      » L+W-I 
r^~ ^    V      Y    ,r^      .XT^L-I-1       V k,     ..     W + L-l-k... 
Q^ZJ      ^    (D-l)D IJ        73(r,t)Y2 (t) 

1 = 1  j=0 k=l 

x exp{r(kR + jTQ) + t [(W + L - I - k) R + (j + 2) TQ]}    ,       t ^ 0,   r ^ 0 (70) 

where we have eliminated T , by using instead  0 or -T  ,  whichever provided an upper bound. 

Amending these results with one expressed in Eq. (30),  we obtain 

L 

Q+^    YJ    (D- l)DL"f_1 exp{(W + L-l) [|  ^2<2t) + tRl + tT0)      >       t:^0 (71> 
1 = 1 

L     oo    L+W-I 

Q~><    ZEE (D- l)DL_f"4 exp{k[| F,1(2r) + rR] + k[^  HL2(2t) + tR]} 

1 = 1 j=0     k=l 

x exp{(W + L - I - k) [| ^2(2t) + tR] + jrTc 

+ (j + 2) tTQ}       ,       t^O,   r^ 0       . (72) 
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These sums may be carried out with a single value for r and t,  but a better result is achieved 

if an attempt is made to choose values closer to the optimum values for each term in the same 

manner as in Sec. III. 

We consider Q    first.    Recalling that 

ß{t) = | >i2<2t) + tR + InD [Eq. (39)] 

and letting m = W + L - £,  Eq. (71) can be rewritten 

W+L-l 

Q+^  (Dw+y        £       exp[m/J(t) + tTQ]       ,       t^O      . (73) 
D m=W 

The variable t  is a function of m and should be chosen according to 

<MM = - ä (74) 

for each value of the index.    However,  such a procedure would complicate the summations un- 

necessarily.   Instead, we note that for large W,  and we are chiefly interested in the exponential 

behavior with W,  T /m in Eq. (74) approaches zero.    Hence t becomes essentially constant and 
equal to t  .    Thus the sum can be carried out for t = t. to obtain 

W   ^      D 

l-exp[L/3(t   )]|    tT 
l-exp[g(tjl      e       ^xpi-WUnD-/^)]}      . (75) 

Turning now to Q  ,  we apply a fairly loose bounding technique for the sake of simplicity. 
We remark, however, that the two-value method used in all previous calculations could be ap- 

plied instead,  but owing to the triple sum to be performed and the fact that the index at which 

the approximation changes can fall outside the summation limits as well as inside, the result 

rapidly becomes cumbersome. 
Recalling that 

and 

a(r) =  \ n±(2r) + rR [Eq. (40)) 

ß(t) =  |  ^2(2t) + tR + InD [Eq. (39)] 

and letting m = L - I,  we rewrite the bound to Q    of Eq. (72), 

»    L-l   W+m 
Q"^^WT1    SEE      exp[ka(r) + jrTQ + (W + m) /3(t) + (j + 2) tTQ] (76) 

D j = 0  m=0    k=l 

for t > 0 and r .<: 0. 
Noting first that the choice of r depends only on k and j while the choice of t  depends on 

m and j, we consider choosing both these parameters for a fixed j.    The optimum value of r 
could be chosen for each value of k and j  according to 

T 
a'(r) = -j-^      . (77a) 
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However,  this would make the analysis very complex.    Instead,  we choose a single value of r 

and optimize the result over this parameter.    Similarly,  a different t  could be chosen for each 

value of m and j according to 

-(J + 2)T 
0'(t) = (77b) 

W +m 

Again this leads to unmanageable detail.    We note that the exponent proportional to t  in Eq. (76) 

grows without bound as the sum on j  proceeds.    Therefore, we choose one value of t  in terms 

with a small value of j and set t = 0 for the remaining terms. 

We now note that when a(r) is negative, the dominant term in the sum on k is that corre- 

sponding to k = 1 and that the dominant term in the sum on m is that corresponding to m = 0. 

Thus Eq. (76) can be bounded to obtain 

«    L-l 

Q\<^    E     E      (W + m) exp[a(r) + jrTQ + W/3(t) + (j + 2) tTQ] 
D j = 0  m=0 

(78a) 
2D 

Thus the exponential behavior with respect to the tail length W  is controlled by ß(t) alone. 

Since ß(t) is a minimum for t = t  , we choose t according to 

t = 
*1      j<Jo 

0       j^jr (78b) 

Therefore,  from Eqs. (78a) and (78b), 

Q"^ 
L (2W + L - 1) (D - 1) 

2D W+l 

V1 

E     exp[a(r) + jrTQ + W/Sft^ + (j + 2) ^TJ 

j=0 

+     E    exp[a(r) + jrT    + W In D] (79) 

We change from t = t. to t = 0 at the term for which the second value of t gives a smaller 

value than the first.    This occurs for 

W [lnD-j8(t,)] W (lnD-/S(t,)] 
Jo ^ 

*lTo 
t.T 1   o 

(80) 

The first summation in the braces of Eq. (79) can be bounded by the product of the number 

of terms and the largest term.    If this bound is employed,  the sign of the sum r + t. delineates 

two cases which must be considered separately.    Thus,  from Eq. (79) and the relationship 

E^f^ 
J = Jn 

■V) 



we obtain for r + t   > 0 

n-      L(2W + L- 1) (D- 1) 
w ^ w+i  2DW   a 

jQ exp[a(r) + W/?^) + 21^ + jQ(r + tj TQ] 

exp[a(r) + W InD + JorTQ] 
rT 

1-e     ° 

expJa(r)-2rTo + -^L [In D - 0(^)1 j \ 

rT 
1-e     ° 

(81) 

for any r ,<: 0,   and if r + t   ^ 0 

Q-^ L(2W + L-D1)(D-1) A    exp{a(r) + 2tiTo_ w (InD-^t,)]} 

exp{a(r)- 2rTQ + ^ [lnD-/?^)]} 

rT 
1-e     ° 

(82) 

for any r^ 0. 

In the bound to Q  ,  the chief interest is the part of the exponent proportional to W,  the 

length of the tail.    When r + t    > 0,  the coefficient of W  is given by 

y- [lnD-/S(tJ] 
xl 

but when r + t. < 0,  the bound has two terms each with a different coefficient.     In this case, 
however,   r/t, < — 1 so that the coefficient 

[InD-/^)] 

is the dominant one. 

The choice of r  must now be made.    Since we required o-(r) to be nonpositive in the bounding 

process,  and since the best exponent is obtained when r  is as negative as possible,  we choose 

r = r   .    With these bounds on Q    and Q  ,  we can proceed to the final step. 
The bounds to Q    and Q  ,  when summed,  give a bound to P  ,  the probability of reaching the 

end of the tree on a path other than the correct one.    Because of the complexity of the expres- 

sions,  we cannot discuss them in general.    For Gaussian noise,  however,  we can plot the ex- 

ponent as a function of the various parameters,   and then discuss its behavior for this important 

case. 

E.    Gaussian Noise 

Using the moment generating functions found under the differential bias assumption in 

Sec. Ill,  we can consider in detail the error probability for Gaussian noise.    If the expressions 
are examined,   it becomes clear that P    decreases exponentially with W,   the length of the tail 

beyond the last node of the tree.    This is due to the fact that at earlier depths,  the number of 
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Fig. 12.    Exponent of Q   vs bias constant. 

alternatives is growing exponentially.    Thus the additional data points which become available 

as the process continues do not contribute to lowering the error probability. 

Since P    can be made as small as desired by increasing W,  we plot the coefficient of W  as 
*~ 2     2 a function of the bias constant for various values of the ratio 6  /a  .    The part of P    due to the 

2     2 ^ first type of error is plotted in Fig. 12.    For a fixed value of Ö  /a  ,  the exponent becomes more 

negative as the bias constant decreases.    This is due to the fact that for a larger value of the 

bias constant,   it is more likely that the metric on an incorrect path will remain above the refer- 

ence metric value for the entire tree duration.    As Ö /a    increases, the whole curve shifts to 

more negative values. 

The remaining portion of P    due to errors of the second kind has a peaked behavior and is 

plotted in Fig. 13.    In the events leading to errors of the second kind,  the joint behavior of the 

metric on the correct path and on incorrect paths is involved.    Since the probability that an in- 

correct path remains above a particular threshold increases with increasing bias constant and 

the probability that the correct path falls below the threshold decreases with increasing bias 

constant,  there are regions in which each situation dominates.    Thus there is a best error ex- 

ponent for the second type of error at an intermediate value of the bias constant.    We note that 

the exponent for large bias constant is the same for errors of the first kind as for the second 

kind,  and that for small bias constant,  errors of the second kind predominate.    Hence the curves 

of Fig. 13 also display the behavior of the total error exponent. 

Finally,  the exponent for the optimum value of the bias constant is plotted in Fig. 14.    It is 

seen to have the usual behavior for exponents of this type. 

F.    Probability of First Error 

Of alternate interest in many measurement problems is the probability of making a first 

error,  rather than the probability of making any error at all.    However,  it is clear from 

Sec. IV-B that the probability of making an error at depth  I,   P    is upper bounded according to 
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where Q    and Q    are given by Eqs. (64) and (66).    Thus the summand of Eq. (71) and the sum on 
+ 

j  and k in Eq. (72) provide the desired bound to Q    and G»   ,  respectively. 

Thus,  after a rearranging of terms and setting t = t  , 

tT 
Q,+ « TT1 e     °exp[-W {In D-0(^)1 +  ^^  ^ (t 1)} ]       . (83) 

Since /3(t.) is negative,  we see that the exponent is better if we consider the location of the first 

error closer to the origin of the tree. 

Similarly,  we consider Q ~     From Eq. (76), 

«    W+L-l 

Qf\<VD'W    Z        Z        exp[ka(r) + jrTQ+ (W + L-l)jS(t) + (j + 2)tTQ]       .    (84) 

j=0     k=l 

Again we note that for a (r) ^ 0,  the dominant term in the sum on  k is that corresponding to 

k = 1.    Hence 

Q~4 ^D"^ 
D_W    Z    (W + L-l) exp[a(r) + jrTQ + (W + L-n/3(t) + (j + 2)tTj    .(85) 

j=0 

Since the exponential behavior is again controlled by /3(t),  we can use the same rationale 

for choosing t.    Thus let 

t   : 
*i J<j0 

0       j^jr [Eq. (78b)] 

Thus,  from Eqs. (85) and (78b), 

n-  ,  (D- 1) (W + L-l)     a(r) 

I) W+l 

V1 

Z     exp[jrTo + (W + L- I) jSftj) + (j + 2) tjTj 

+    YJ     exp[jrT    + (W + L - I) In D] (86) 

We choose j    according to 

(W + L-l) [lnD-0(t,)l (W + L-l) [lnD-/3(t   )] 
 — - 2 < i   ^ —^~ 1 

1   o 1   o 
(87) 

Consequently for r + t    > 0, we obtain from Eqs. (86) and (87), 

Joexp[(W + L-l)ß(t±) + 2t1TQ+ (jQ- 1) (r + t^ TQ1 o " /   (D- 1) (W + L-I)     a (r) 

I) 

exp[(W + L - I) InD + j   rTQ) 

rT 
1 - e 
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Qf~ < ^D"1 (w + L - ' lnD-/?^) 

L - 
W 

L- 
W 

[joexP^2tlTo + T7 

1 [(i + T)toD-'M|) + tip("2rTo+^ 

1   [(l + ^) in 0-/5(1^] 

lnD-jSft^ 

(88) 

for any r < 0. 
If,  on the other hand,   r + t. .<: 0,  we obtain 

«,"-< (D"1)
D'w^L'<) •a(r,[j0~p[(WL-i,/ift1)*aJT0] 

exp [ (W + L - I) In D + j^Tj | 

rT 
1 - e 

^ D^i   (W+L_i)e«(r) Joexp{-W [lnD-/?^)-  ^Ü /H^)]} 

exp I - ^-ZrTo + ^l   |inD-iB(t1) + ^    [(l + ^) InD ->(tf) 

rT 
1 - e 

.    (89) 

The exponent in these expressions can now be examined.    When r + t. > 0, the coefficient 
of W  is identical in the two terms and is given by 

t i ¥[(I + T)1»D-H|  • 
When r + t    <c 0,  there are two different exponents but it is clear that the more positive,  and 
consequently the dominant,  one is 

-[lnD-zJft^ - L - 
W 0(^)1 

The choice of r  can be made as in Sec. IV-D,   r = r  . 
+ - ° Turning at last to P   <: Q     + Q   ,  we note that for some cases the dominant exponent is given 

by the bound to Q     and that in others it is the same for Q     and Q   .    Thus we need consider only 
the exponent in the bound for Q   . 

In these bounds,  the main interest lies in the coefficient of W.    By comparing Eqs. (88) and 

(89) with (81) and (82),   it is clear that this coefficient in the expression for the probability of 

first error is better than that for the probability of any error by a term that grows linearly with 

the distance of the error point from the end of the tree.    Thus the probability of an error at a 

particular point depends not only on the length of the tail,  but also on the number of output sam- 
ples available beyond this point. 
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G.    Summary 

The error probability for the sequential measurement technique on a finite tree is bounded 

by a quantity that decreases exponentially with W.     The exponent  is  calculated in detail for 

Gaussian noise.    This exponent is plotted in Fig. 14 along with a similar bound for a correlation 
technique discussed in Appendix B.    As is evident from the curves,  there is a degradation in 

error probability exponent due to the sequential procedure' but in the cases considered here, 

the number of computations is the critical issue and for reasonable values of <5  /a ,  the sequen- 

tial procedure is more attractive from this viewpoint. 

V.    SIMULATION 

A. Introduction 

In the preceding two sections, we analyzed the sequential algorithm as applied to measure- 

ment problems which satisfy two requirements.    First, we required that a tree structure exist 
and second,  we imposed a somewhat abstract assumption describing the relations among the hy- 
potheses in the output space.   This assumption was referred to as the differential bias assumption. 
Under these assumptions, we demonstrated that the sequential algorithm could be used to perform 
the measurement with a limited number of computations and with an error probability that de- 

creases exponentially with the number of observations not dependent on undetermined parameters. 
However,  analysis is only to suggest the operational characteristics of a system;  in order 

to test the model,   to verify the hypotheses,  and to suggest avenues for further analysis,   exper- 

iments should be conducted.    With this view in mind,  an experimental "apparatus" in the form 
of a simulation program was designed and assembled.     A number  of experiments were per- 

formed and the resultant data indicated that the mathematical model was a satisfactory repre- 
sentation of the experimental model.     In this section,  we describe in detail the experiments and 

the results. 

B. Simulation Objectives 

There were several specific reasons for the simulation.    In the first place,  the sequential 

algorithm itself is fairly complex and tracing through the flow chart of Fig. 5 manually is,  at 

best,  tedious.    A simulation that would graphically indicate the dynamics of the algorithm would 

do much to aid in its understanding and perhaps to suggest methods of improvement. 

A second reason for the simulation was to test the various assumptions used in the analysis. 

Although the differential bias assumption specifies conditions under which the sequential meas- 

urement technique will function satisfactorily,   it is difficult to assess,   in most situations of 

practical interest,  whether or not it is satisfied.    Of course,  an exhaustive computational analy- 

sis could be employed for a specific measurement situation,  but this would produce little under- 

standing of the general class of problems to which it applies. 
In addition,  although the differential bias assumption is sufficient to prove that the sequen- 

tial method can be used in measurement problems,  it may not be necessary.    That is, weaker 
requirements on the differences between output vectors may still allow the sequential method 
to be employed.    For this reason,  and for the previous one, the simulation became desirable. 
By using the simulation, we could ascertain whether or not the sequential method could be ap- 

plied to a particular measurement problem. 

fThe error probability for sequential measurement is lower bounded by the correlation error probability for the 
last decision. 
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Finally, we recall the coarseness of the bounds used to obtain the theoretical results.    A 

compilation of data on typical problems would indicate whether these approximations left the es- 
sential characteristics of the bounded quantities intact. 

In the bulk of the simulations work, the measurement problem considered was that of geo- 

physical exploration. This problem was chosen for simulation because of a need for improved 

data-processing methods in that area. In addition, the geophysical exploration problem seemed 

typical of the many measurement situations in which it is difficult to assess the applicability of 

the algorithm. The model described in Sec. II was used, since it displayed the essential char- 

acteristics of the real problem without introducing excessive computational difficulties. 

C.    Simulation Program 

The author was fortunate to have the opportunity to carry out the simulation on a time- 
13 shared IBM 7094 computer.       These facilities were available at Project MAC,  an M.I.T. re- 

search group directed toward improved man-machine communication.    Through on-line inter- 

action with the computer,   it was possible to observe directly and immediately how the simulator 

was operating,  and to modify it at once whenever a change was necessary.    More important, 

however,  the dynamics of the decoder became readily available,  thus leading to a significantly 

improved understanding of the decoder's operation.    The availability of a graphic display unit 

made the dynamics very clear.    Examples of the display were presented in Sec. II in connection 

with the description of the Fano sequential decoding algorithm.    By varying the decoder's char- 

acteristic constants (R, T   ) and the noise variance,  one could observe directly the effects of these 

variations on the over-all decoding process.    Then one could plan intelligently the bulk of the 

off-line experimental work. 

The simulation program is divided into several parts as indicated in Fig. 15,  according to 

the various tasks that must be performed.    First,   all parameters are set to their initial values. 

These include various counters to tally the number of computations, the location variable which 
indicates the current location of the decoder,   the choice vector i(n) which indicates the alternative 
chosen by the  decoder at each node,   the threshold value,   and the  metric.    In addition,  the 

REQUEST 
OUTPUT 

FOR HYPOTHESIS 

IS REOUESTED 
OUTPUT 

IN STORE? 

GENERATE  IT 
AND 

PUT IT IN STORE 

3-22-5980 

INITIALIZE 
ALL 

PARAMETERS 

READ 
DATA 

ADD 
NOISE 

REPORT CURRENT STATUS 
WHEN  IN  LOOP  A 

AND 
AT END OF TREE 

Fig. 15.    Main sections of simulation program. 
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noise-free data store is emptied.    Then the program is set up to read data for the next run.   The 

following quantities are read as inputs: 

The true values for the unknown parameters. 

The probe signal. 

The true noise-free data sequence resulting from the true parameters and 
probe signal.    Reading this in saves recomputation when the same noise-free 
data are to be retested. 

A set of independent Gaussian noise samples of zero mean and unit variance. 

The set of quantization levels. 

The noise variance. 

The bias constant. 

The metric increment. 

A series of parameters governing the frequency of output. 

After these parameters are read in,  the noise is scaled according to the variance.    It is 
then added to the true noise-free data sequence to provide noisy data to the decoder.    The de- 

coder is then entered. 
The decoder operates according to the algorithm of the flow chart discussed in Sec. II.    At 

each stage,  it computes an increment to the metric according to 

(i+1) v-\ 

YJ        [C - (v. - z.)2] (90) V 

where  C  is a constant,   v  is the number of intervals along a tree branch,  y. is the received noisy 
data at time j  and  z. is the noise-free output consistent with the current hypothesis and the probe 

J th signal.    The sum is over all those intervals depending on the i     hypothesis,  but not on the 

(i + Dth. 
We note that this metric is of the form 

£ [R + lnpn(y.|z.)] 

for Gaussian noise.    For in that case 

R + lnpn(y.|Zj) = R + In   exp[-(y. - z.)  /2CT  ] 
/2? a J        J 

= -i=  [2(j2R - a2 In 2TTC7
2
 - (y. - z.)2]       . 

2a J        J 

Thus Eqs. (90) and (91) are proportional if 

C = cr2(2R -ln27ra2)      . 

Consequently, the requirement that  R be greater than the noise entropy introduced in 

Sec. III-H 

R > H(N) 

or 

(91) 

(92) 
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reduces to 

R > I In (27rea2) 

=   2  lne+   2  ^n 27r(J 

=  f + {ln2,ra2 

Oa2      . (93) 

This is to be expected since C — a    is the expected value of the metric on the correct path and 

the operation of the decoder presupposes this to be positive. 

The hypothesized noise-free output values {y.} are computed according to a subprogram 

which is changed with the measurement problem.    Usually the {y.} are time consuming to com- 

pute.    It is therefore desirable to store them until it no longer appears that they will be needed. 

Then they can be discarded.    In the simulation program discussed here,  a list structure tech- 

nique is used to store the {y.} in a manner that makes their recall time short but does not re- 

quire rearrangement of data in the store when items are to be discarded.     This technique is 

discussed in detail in Sec. V-D. 
Finally,  provision is made to output the decoder's conditions at a selected frequency of pas- 

sage through loop A.    This output is in either a printed form giving the current hypothesis or in 
an oscillographic form displaying the metric values along those branches investigated by the de- 

coder.    Photographs of this display were presented in Fig. 6 to illustrate the operation of the 
algorithm. 

D.    Hypothesis Storage 

Because of the computation time necessary in many measurement problems to compute the 
noise-free output resulting from a particular  hypothesis and probe signal,   it is worthwhile to 

consider techniques of storing these quantities.    A satisfactory method must permit rapid access 

and small bookkeeping cost with respect to time and storage. 

Several obvious techniques present themselves.    First,  a storage location could be provided 

for each possible composite hypothesis.    The multidimensional aspect of the hypothesis vector 
makes this procedure absurd because of the huge storage required. 

Second,  a storage location could be provided for all hypotheses having a common first part, 

but differing in the tail.    This method would require D   locations if the tail is of length t.    Thus 
the number of required locations remains fixed,  as the decoder advances further into the tree. 
However,  care must be taken in the design of the storage to permit rapid access to the informa- 
tion and to avoid excessive time spent in moving the data within the store as the decoder advances. 

The method chosen for the simulation is of this type,  but once the method is described,  a 
third method can be suggested which permits the length of the tail to vary in a desirable manner. 

Before continuing,  it is necessary to say a few words about list structures. 
A list in a computer is a group of storage locations which are tied together by means of 

secondary locations we shall refer to as links.    These links contain the machine addresses of 
other members of the list.    Table I is an example of a three-element list.    Link A contains the 
address of link B,  and link B contains that of link C,  etc.    N.,  NR,  and Np,  entries on the list, 

are thus tied together by the links.    If link A is tagged in some way to be the designated first 
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TABLE 1 

A SIMPLE ORDERED LIST 

Machine 
Address Symbolic Name Contents 

4714 LinkC 000 

4715 List element C Nc 

6102 Link A 7452 

6103 List element A NA 

7452 LinkB 4714 

7453 List element B NB 

element of the list, we can consider the list in the table as an ordered list, with the links de- 

tailing the order A,  B,  C. 
A list structure develops if one of the members of a list is the name of a second list,   known 

as a sublist of the first.    The process may,  of course,  continue indefinitely,  with sublists on 
sublists of other lists,  etc. 

With these preliminary definitions,  we can describe the storage technique used in the simu- 
lation program.    Each node which the decoder considers is stored as a separate ordered list. 
When the node list is first created,   it contains 2D list elements,  but an additional element is 
added whenever one of the branches leaving this node is tried by the decoder.    Of the original 

list elements,  the odd-numbered ones contain the hypothesized parameter values for the node 

and the even-numbered ones contain the noise-free output values.    Exactly which noise-free out- 

put values are contained in the original even-numbered list elements will become apparent when 

the list structure is indicated.    The parameter values of the list are ordered according to their 

likelihood on the basis of the data. 
Once the decoder chooses a parameter at a node,   it moves to the next node in the tree and 

creates a new list for it.    The name of this list is entered on the list corresponding to the pre- 

vious node,  two entries below the chosen parameter value.    Thus the main list has a tree struc- 
ture of sublists,  each corresponding to a node in the tree.    For the sublist corresponding to a 
particular node to be reached,  one must start at the main list and then proceed further to those 
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(2)   At node D,  the second alternative  is more likely than 
the first. 

Fig. 16.    List structure. 

successive sublists designated by the list names in the list structure.    The structure is illus- 
trated in Fig. 16. 

To recover a noise-free output value from the list structure,  one proceeds through the struc- 

ture choosing successive lists to visit on the basis of the list names that follow the hypothesized 
parameters on each sublist.    The list element below the hypothesized parameter on the list cor- 

responding to the node of interest is the desired output value.    Although the list structure method 

of storage sounds complex,   it is only conceptually more involved than the usual methods.    The 

important feature is that a storage word containing the machine address of the link belonging to 
the current hypothesis needs to be interrogated in order to determine the current decoder posi- 

tion and the data relevant to it.    This storage word is then modified according to the information 

stored in the links as the decoder progresses.    Because of the tree-like nature of the list struc- 

ture,  only a few links need be taken to reach any list that corresponds to a node of interest to 

the decoder. 
When one decides to remove a node from the store,  one must delete only the corresponding 

list name from lists on which it appears and then inform the bookkeeper that the extra list ele- 
ments used in the list's formation are now available for other lists yet to be generated. 

The removal of an entry in the list structure is governed,   in the simulation program,  by a 
simple but not optimum technique.    Once the decoder reaches a fixed depth,   say t,  beyond a 
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node,  all superfluous nodes prior to t nodes from the end of the tree are removed from the struc- 

ture.    Hence the required storage remains constant. 

We note,  however,  that only a few of the D   hypotheses in the tail will be tried; therefore, 

keeping D   locations available in storage is wasteful of space.    A better technique would consist 

of keeping the storage size fixed at some convenient level,  and then removing early nodes from 

the store when,  and only when,  an overflow occurs.    Hence a storage size of D   would permit 

storage of nodes at depths earlier than t before the end of the tree 

Coding the list manipulations was greatly simplified by the use of the Symmetric List Proc- 
14 essor language.       This consists of a set of FORTRAN subroutines which automatically establish 

the links and extract information from the list structure as well as performing many other book- 

keeping tasks.    The reader is referred to Ref. 14 for further information on the system. 

With these comments on the simulation program, we proceed to a discussion of the simu- 
lation itself. 

E.    Simulation Experiments 

As discussed in Sec. II-E,  a simplified model of the geophysical exploration problem was 
chosen to provide a measurement situation for testing the theoretical results by simulation.   This 
model is described in that section. 

In the simulation itself, the true impedance levels were chosen randomly in such a manner 

as to represent layers of various thicknesses.    That is,  a layer four units thick would be mod- 

eled by four equal,  consecutive impedance values.    Thus a fairly realistic fit could be made to 

many geological situations that involved only two materials. 

The input signal was chosen,  at first,  to be a random sequence of pulses,  but it soon became 

apparent that the largest possible signal-to-noise ratio should be provided to make the first es- 

timate of an impedance value and thus a single pulse of maximum available energy is preferable. 
Only if there is a peak power limitation should an extended input be used. 

For the given true parameter set and the input signal,  it is possible to compute the true- 
observed noise-free data.    This was done and noise was added from a set of Gaussian-distributed 

independent random samples.    The noise level was varied by scaling a set of unit variance sam- 
ples by the standard deviation.    Once this addition was performed,  a set of observed samples 

was available upon which the decoder could operate. 
The program was organized to perform a number of sequential measurements on the same 

set of impedance values by varying for each the noise variance <J , the bias constant C,   and the 
threshold increment T   .    In addition,  the number of times the decoder passed through loop A 

in the flow chart of Fig. 5 was tallied to permit a progress report at any specified frequency. 
Provision was made to halt the measurement after a fixed number of passages through loop A. 

As we shall see in the next section,  this possibility for termination will enter into the results 
of the simulation study. 

To be definite,  we shall define an experiment by using the simulator as an attempt to decode 
all unknown impedance values in a geophysical model that has a particular set of true quantized 

2 
impedance values,  a particular probe signal,  a particular set of noise samples of variance a  , 

and particular values for the parameters  C  and T   .    A great many experiments of this type were 

conducted,  but the total number was,  of course,  a minute fraction of those possible.    The choice 

of which experiments to perform was governed to a great degree by experience gained during the 
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on-line portion of the experimentation during which few actual data were obtained.    On the basis 

of this experience,  it was possible to choose a set of experiments that would be reasonable in 
number yet meaningful in result. 

As mentioned earlier,  the true impedance values were chosen to suggest a layered structure. 
Three different sets of 32 values were employed in the experimentation,  each displaying a dif- 

ferent degree of randomness.    However,  in choosing the values themselves,  no conscious pattern 

was used.    The intent was to represent typical geological environments.    The characteristics of 
each of these sets will be discussed in more detail later. 

The probe signal was a single pulse of amplitude 5.567.    This particular value arose from 

a desire to compare the single-pulse results with those obtained for a sequence of 31 unit pulses 

with good autocorrelation function.    Although no complete data were taken,  the improvement ob- 

tained by using the single pulse was immediately apparent. 

The noise samples were obtained from a Gaussian pseudo-noise generator available in the 
15 IBM 7094 library.       Only a few sequences of noise samples were used in the tests,  and the noise 

level was varied by scaling the samples according to the standard deviation.    This procedure 
permitted an evaluation of the effect of changing a parameter of the decoding process without con- 

cern for variation in the noise sequences,  and without using the alternative of Monte Carlo opera- 

tion to average the noise effects.    In general,  the change to a different basic sequence of noise 

samples did not affect the data significantly. 

The noise variance a   was varied a great deal in the experiments.    It is important to note 

that its value was measured with respect to an input pulse amplitude.    Thus,  when one considers 

to what degree the noise obstructs the observations,  a direct comparison of the noise variance 
with the effect under scrutiny is necessary.    For example,   if one is trying to measure an effect 

that appears in the fourth decimal place,  it would be difficult to observe if the noise had a vari- 
ance of 10      and a standard deviation of 10 

The threshold increment T    was varied along with C,   the bias constant,  and was always 
set equal to C/2.    From the on-line experimentation,  it was evident that T    variations did not 
affect the results significantly,  unless it was chosen too small.    We shall see some data in sup- 

port of this view later. 
Finally,  the bias constant C was varied considerably.    Since the ratio C/CT    must exceed 

unity for the average metric value along the correct path to be positive,  it was varied from that 
level by two orders of magnitude.    We shall see that its choice was important in determining the 

outcome of an experiment. 
Thus the main variations in the experimentation were of the noise variance a    and the bias 

constant  C.    The results of the experiments could then be presented as a set of experimental 

curves of the same form as those derived theoretically in Sec. III. 

F.    Simulation Results 

Figure 17(a-c) presents the results of the simulated measurement.    Each point on these 

curves indicates the number of computations required to estimate a complete set of 32 param- 
2 

eters with a specified noise variance a  ,  threshold increment T  ,  and bias constant  C.    All 

points thus plotted in each curve are for the particular set of 32 quantized impedance values 

listed in Table II.    As becomes clear from an examination of the figures,  the simulated curves 

are similar in form to those derived theoretically,  but vary distinctly among themselves in the 
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TABLE II 

PARAMETER VALUES FOR SIMULATION 

Depth 

Parameter Set For 

Fig. 17(a) Fig. 17(b) Fig. 17(c) 

1 1.0 1.0 1.0 

2 1.0 1.0 0.1 

3 1.0 0.1 1.0 

4 0.1 0.1 1.0 

5 0.1 0.1 1.0 

6 0.1 0.1 1.0 

7 1.0 1.0 0.1 

8 1.0 0.1 0.1 

9 1.0 0.1 1.0 

10 0.1 0.1 1.0 

11 0.1 1.0 0.1 

12 0.1 1.0 1.0 

13 0.1 1.0 0.1 

14 0.1 1.0 0.1 

15 0.1 1.0 1.0 

16 0.1 1.0 0.1 

17 0.1 0.1 0.1 

18 1.0 0.1 1.0 

19 1.0 1.0 1.0 

20 1.0 1.0 1.0 

21 1.0 1.0 0.1 

22 1.0 1.0 0.1 

23 0.1 1.0 1.0 

24 0.1 0.1 0.1 

25 0.1 0.1 0.1 

26 1.0 1.0 1.0 

27 1.0 1.0 0.1 

28 1.0 0.1 1.0 

29 1.0 0.1 0.1 

30 1.0 0.1 0.1 

31 1.0 0.1 0.1 

32 1.0 1.0 1.0 
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noise variance value used to produce each separate curve.    We shall see that this is due to the 
fact that a distinctly different differential bias parameter  Ö obtains for each set of parameter 
values. 

We note that there are four types of points on these curves.    First, there are those corre- 

sponding to a correct estimate of the complete parameter set; these are plotted along the curves. 

Second,  there are those corresponding to an incorrect estimate of one or more parameters; 

these are plotted at the top of the graph.    The third and fourth types arise because of the limit 

placed on the number of computations.    If the decoder performs this maximum number of com- 

putations and tries the correct set of parameters,  and this set has the maximum metric,  the 

decoder has in effect been successful,  although it did not satisfy its internal constraints.    Such 
a point is plotted at N = 200,  the maximum number of computations permitted.    If the decoder 

does not try the correct set before reaching the computational limit,  an error is made.    Such a 

point is also plotted at the top of the graph.    It is possible to have a fifth type of point,  although 

this did not occur in the simulation.    If the decoder tries the correct parameter set as well as 
some others and one of these incorrect sets has the highest metric,  the decoder will err.    How- 

ever,  we note that any unbiased estimation procedure will also err,  since the received signal 
vector is no longer closest to the correct noise-free vector in the output space. 

This limitation on the number of computations was not the only special condition of the simu- 

lation.    In all our previous discussions, we assumed that the decoder operated with perfect pre- 
cision.    Since this did not hold true in practice,  there were several instances in which this effect 

became apparent.    Generally speaking,  they occurred when the additive noise level was low and 
the bias constant was also set at a low level.    In this event,  the metric increments on an incor- 
rect branch would be several orders of magnitude larger than the total metric value.    Thus,  when 
an incorrect branch was tested,  the threshold would be violated.    When the decoder tried to re- 
trace its steps to return to the correct path,  all precision in the metric would have been lost. 

This difficulty with the computer's precision arose also when internally calculated values 

were compared with the same values that have been transferred through the computer's input- 

output facility.    Round-off errors brought about a second noise source that proved to be larger 

than the additive noise on several occasions. 

As stated earlier,  the data resulting from the simulation are presented in Fig. 17(a-c). 

Some general comments can be made about them.    In the first place, they are seen to have the 

same over-all shape as the theoretical curves.    For small bias constant,  the number of compu- 

tations is large because the correct path will tend to have negative metric increments as well 
as the incorrect paths.    Thus the decoder may never leave the correct path,  but it will repeatedly 

be forced back to the origin of the tree by increasingly negative metric values.    For large bias 
constant,  the incorrect paths will appear correct for several branches before a sufficient num- 
ber of incorrect branches has been traversed to make the incorrect path have a very negative 

metric increment.    Since the decoder will have to modify several hypotheses before returning 

to the correct path,  the number of computations to rectify the error will be large. 
An examination of the variance values on each curve indicates that the number of computa- 

tions decreases as the noise level decreases.    Indeed,  it would be surprising if it were other- 
wise.    However,  we note that the particular noise variance on each curve is different for each 

set of true impedance values.    In the next section,  we shall see that this is due to a marked dif- 
ference in the degree of dissimilarity between the correct output vector and the set of incorrect 

output vectors. 
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Fig. 18.    Number of computations vs ratio of threshold increment to bias constant. 

Fig. 19.    Estimated 5    vs depth. 
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A few less formal results were obtained from the simulation.    Although an attempt was made 

to analyze the microscopic behavior of the decoder,  it did not seem useful to make any quantitative 

analyses; however,  a few qualitative remarks are in order.    Generally,  the performance was as 

expected.    As the bias constant was increased for a particular noise level,  the number of com- 

putations required to correct a given error grew.    This was due to the tendency of the metric on 

incorrect paths to increase when the bias is large.    However,  the number required to terminate 

the estimation after the correct hypothesis was tried for the first time decreased as the bias 

constant was increased.    This was due to the fact that the tail includes many noise samples and 

this tends to produce a negative metric even on the correct path.    As the bias constant becomes 

large,  this tendency lessens.    Finally as the noise level increases,  the decoder makes its first 
error at an earlier depth in the tree. 

Setting the threshold increment T    at the value C/Z was done on the basis of evidence ob- 

tained from preliminary simulation work.    Clearly,  it should not be chosen too small or else 

many computations would be necessary to lower the threshold a fixed amount.    If it is too large, 
the metric values on incorrect paths,  although they decrease,  will not fall below the threshold 
soon enough,   causing incorrect paths to be searched unnecessarily.    To check this choice of T   , 

a series of runs was performed for different values of the ratio T  /C.    The results are presented 
in Fig. 18.    It is clear that the choice of T  /C is not critical. 

G.    Discussion of Results 

Unfortunately,   it is not possible to make a direct quantitative comparison of the theoretical 

and experimental results.    This cannot be expected since,   in the theoretical work,  it was as- 

sumed that the bias introduced by following the incorrect path was independent of depth,  whereas 

in the simulated geophysical problem this bias decreases exponentially with depth owing to the 

multiplicative coupling between layers.    Nevertheless,  some qualitative comparisons can be 

made. 
We have already noted that the form of the curves obtained by simulation are similar to 

those obtained theoretically.    We also remarked on the differences in variance required to pro- 

duce a set of curves due to the dissimilarities in true impedance values.    This dissimilarity 

would be reflected in the value of the differential bias parameter  Ö,   if it could be computed. 
However,  as noted earlier,   computation of ö would require exhaustive effort. 

A 
Fortunately,  a simply calculated quantity  Ö  indicates the magnitude of the effect one is using 

to originally hypothesize a value for a parameter.    This quantity is the value obtained by calcu- 
lating the noise-free output for each alternative at the nodes along the correct path,  and then 
taking the difference between the output for the correct alternative and that for the incorrect one. 

For '.he particular parameter sets used in the simulation,  this calculation was performed.    The 

result as a function of depth is plotted for each parameter set in Fig. 19. 
We can now compare the curves obtained by the simulation with those obtained theoretically. 

From Fig. 19, we observe that the parameter sets used to derive the curves of Fig. 17(a) has a 
A 

lower  6  than those used to derive the curves of Fig. 17(b),  and therefore should be less difficult 

to estimate.    Indeed,  that was the case.    In the same way,  the parameter set used for Fig. 17(c) 

is predicted to be more difficult to estimate than either of the other sets.    Again,  we note the 

agreement. 
An estimate of the degree to which the particular parameter sets used in the simulation are 

A 
typical can be obtained by computing the average value of  6  over the ensemble of parameter sets 
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with two impedance values being equally likely. This computation is given in Appendix D and the 

result for Z./ZR = 10 is plotted in Fig. 19, along with the result for the specific curves. We see 

that the sets used were both better and worse than the average. 

The curves describing the results of the simulation only indicate the experiments that were 

performed with a small enough noise variance so that the decoder would be successful in correctly 

estimating all 32 unknown impedances for some value of the bias constant.    Other experiments 

were also carried out at higher noise levels at which the decoder could not successfully hypothe- 

size the 32 values within the 200 computations allowed.    In fact,  as the noise level increased, 

the number of required computations grew more and more rapidly.    Thus we see experimental 

evidence of the existence of a quantity analogous to R ,  a rate at which the number of com- 

putations in communications grows without bound.    This quantity is particularly important in 

connection with quantization effects,  and therefore will be discussed further in Sec. VI. 

In addition to the results obtained on the decoder's performance,  both quantitatively and 

qualitatively,  some insight into the geophysical problem was obtained.    We shall discuss this 

understanding,  as well as the effects of using the sequential algorithm on a nonquantized problem, 

in the next section. 

H.    Summary 

The results of the simulation have borne out the theoretical results insofar as the general 

behavior of the number of computations vs the bias constant is concerned.    A direct comparison 

of results is difficult because the decreasing amplitude of the effect depends on the unknown 

parameters in the simulated case.    In view of the over-all character,  however,  it seems safe 
to say that the assumptions were reasonable and that the sequential measurement procedure is 

satisfactory on this simplified model of the geophysical layering problem. 

VI.   QUANTIZATION EFFECTS 

A. Introduction 

In this section,  we consider briefly the problems arising from the quantization of the unknown 

parameters.    We shall see that there is an upper limit to the precision obtainable with the se- 

quential technique which may be below that obtainable with some other method.    In addition,  a 

masking noise arises which must be considered along with the additive noise in determining the 

total noise level. 

B. Computational Cutoff 

In the hypothesis testing done by the sequential algorithm,  the differential bias parameter 

Ö  specified to what degree the various alternatives at a node affected the noise-free output vec- 

tor.    If these alternatives represent a set of quantization steps for a continuous parameter,  the 

magnitude of 6  is a measure of the effect produced at the output by a change of one quantization 

step. 
The magnitude of  6  is determined partly by the signal energy,   partly by the transformation 

introduced by the transducer being measured,  and partly by the size of the quantization steps. 
For a fixed available energy,  the only one of these items which can be varied by the observer 

is the size of the quantization steps. 
It is important to note that the ratio of the available energy to the receiver noise level is not 

sufficient to determine the precision.    In particular,  one must account for distortions which the 
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Signal must undergo in the transducer after it "picks up" information about the unknown param- 

eter,  but before it can be observed.    If,  for example,  this distortion were a saturation effect,  a 

large change in the unknown parameter would be necessary to effect a small change in the trans- 

ducer output.    Thus,  even though both the input and output energies,   relative to the noise level, 

were large, those details in the output needed to determine precisely the unknown parameter 
would be lost in the compression.    Consequently,  one must consider transducer effects,  as well 
as energy and noise level,  in determining the precision that is possible. 

We saw in both the theoretical and simulation work that when  <5 was too small relative to 

the noise, the decoder no longer efficiently chose the correct hypothesis set.    Instead,  it effec- 

tively began an exhaustive search of all possible hypotheses.    Thus there was a critical value of 
the ratio ö/cr below which the decoder was ineffective.    For fixed available energy,  noise level, 

and transducer,  this implies that there is a critical quantization step size below which the se- 

quential method cannot be used.    Since the size of the quantization steps indicates the precision 
of the measured parameter,  the noise level,  the available energy and the transducer all contrib- 
ute to a maximum degree of precision that can be obtained. 

It is informative to compare this limit with the corresponding limit in the communications 

case.    Sequential decoding was found to be an effective and efficient decoding technique,  as long 

as a particular rate R was not exceeded.    If communication at a higher rate was tried,  the ^ comp 6 

frequency of lengthy searches became so high that the average number of computations began to 

grow rapidly with constraint length. 

If we now note that the precision of a parameter is the amount of information needed to spec- 

ify it, we see that the precision obtained from a measurement is analogous to the rate of trans- 

mission in communications.    Thus the critical size of the quantization steps in measurements 

and R , are analogous quantities.    In addition,  we note that it may be possible,  by using an 

exhaustive nonsequential search procedure, to measure the unknown parameters to a higher de- 
gree of precision than is possible with a sequential method.    This only means that the critical 

"rate" is below the maximum rate or channel capacity imposed by the available energy,  the noise 

level,  and the tranducer characteristics. 

C.    Masking Noise 

In the preceding section,  we observed that the available energy,  the noise level,  and the 
transducer set an upper limit to the degree of precision that can be obtained.    The resultant im- 

perfect precision leads to an effect which we shall refer to as masking noise. 
V/hen the sequential measurement technique is used, the k     hypothesis is made on the basis 

of a quantity which was derived from the observed data vector and the set of k — 1 hypotheses 
that has already been made.    Define this quantity as the reduced data point for the k     hypothe- 

sis.    Because of the lack of precision in estimating the first k — 1 unknown parameters,   it will 

not be possible to compute exactly the reduced data point for the k     hypothesis.    The imprecision 

that results will be defined as the masking noise and must be considered with the additive noise 

when evaluating the noise level.    If the precision is sufficiently high in estimating the first k — 1 

parameters,  the masking noise will be small and will be dominated by the additive noise.    If the 
precision is low,  the masking noise will be the dominant problem.    Thus the precision with which 

early estimates are made affects the error probability and number of computations for later es- 

timates through the masking noise level. 
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We note that the masking noise is highly structured,  since many dependencies exist among 

samples.    Thus it cannot be considered simply as an increase in the additive noise level. 

D.    Precision in Geophysical Problem 

We have noted in the preceding section how the precision at one depth in the decoding tree 

will affect the decoder in making estimates at later depths.    We also noted in Sec. V that the out- 

put effect of varying an unknown parameter is an exponentially decreasing function of the number 

of previous discontinuities.    In this section,  we discuss the results of these effects in connection 

with the geophysical problem considered by simulation in Sec. V. 

The limitation in precision discussed in Sec. VI-B led to the definition of a minimum value 

of the ratio ö/cr for which the sequential procedure could be used.    Since this ratio decreases 

exponentially with depth in the geophysical layering problem,  the precision which can be obtained 

(at a fixed noise level) decreases with depth as well.    Thus the number of quantization levels 

should be reduced as one proceeds to deeper levels in the tree. 

The decreasing precision with which the impedance value of an increasingly deep layer can 

be measured depends not only on the decreasing 6/cr ratio,  but also on the increasing masking 

noise level that arises.    As indicated in the preceding section, the masking noise level increases 
as one measures more and more parameters.    Thus the masking noise level increases with depth 
in the geophysical layering problem.    For this reason,  one should quantize to as many levels as 

the o/o- ratio permits.    Then the masking noise will be reduced as much as possible for later 

hypotheses. 
Consequently,  because of the decreasing ö/cr ratio and the increasing masking noise, we 

see that the number of quantization levels should be decreased with depth,  choosing the number 

at each depth as small as the ö/cr ratio permits.    Thus we will determine the unknown parameters 

with a degree of precision that decreases with increasing depth. 

VII.    SUMMARY AND RECOMMENDATIONS 

A.    Summary 

In this report,  the applicability of a sequential measurement technique to a fairly broad 

class of problems was considered and was analyzed both theoretically and experimentally by com- 

puter simulation.    Necessary conditions were determined under which the sequential procedure 

could be successfully operated with a limited number of computations,  and with an error prob- 

ability that decreased exponentially with the number of observations that can be made after the 

last hypothesis.    A parameter was defined which could be used to characterize a particular 

measurement problem and in terms of which the performance could be estimated.    In Sees. Ill 

and IV,   curves were derived to indicate upper bounds to the level of this performance. 

Since the value of the performance parameters is frequently difficult to determine and since 

many approximations were used in obtaining the theoretical results,  it seemed desirable to sim- 
ulate the sequential measurement algorithm that operates on a measurement problem of practical 
interest.    Such a simulation was performed on a geophysical exploration model.    From the sim- 
ulation,   it was possible to obtain curves of the same variables that were obtained theoretically, 
and thereby to compare the simulated results with those calculated.    The comparison seemed 

to be a favorable one.    The curves obtained by experiment were of the same general form as 
those obtained from the theory and by estimating the performance-dictating parameter mentioned 
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above,  it was possible to make a slightly more specific comparison.    Again,  there seems to be 
good agreement between experiment and theory. 

The shortcomings of this study seem to lie mainly in the reality of the model.    We require 
a situation in which the successive data points are a function of an increasing number of unknown 

parameters and one in which the separation between possible parameter values,  as viewed from 
the output,  is clear.    However,  a preliminary investigation of the geophysical exploration problem 

through computation and simulation indicates that it satisfies these conditions.    Thus the set of 

problems amenable to solution by the sequential measurement algorithm considered in this re- 
port seems to have at least one member.    A detailed study of other measurement  problems 

in order to formulate them into tree-like representation would be necessary for additional 

applications. 

B.    Suggestions for Further Research 

Four research problems seem to follow as natural consequences of this work.    In the first 
place,  the applicability of the model introduced here for the geophysical exploration problem 

must be considered in greater detail.    Such consideration would undoubtedly involve simulation 
with actual seismic data as recorded under field conditions,  instead of the highly idealized data 
used in the simulation discussed above.    Indeed,  the simulator would require additional sophis- 

tication to account for the many seismic records obtained from the usual array of geophones and 

to include a priori information about the geological structure obtained from scattered drillings. 
Only when a complete simulation of this type is attempted would the applicability of the sequen- 

tial method be ascertained. 
The second area for further work lies in increasing the number of problems to which the 

algorithm applies.    Indeed,  there are many multidimensional parameter estimation problems 
of large proportions that are unassailable with the currently used hill-climbing techniques.    If 

such a problem could be stated so that a tree structure becomes evident,   it may well be possible 
that the sequential technique would be applicable. 

Third,  the possibility of a form of feedback can be noted.    When the sequential algorithm is 
having difficulty,  the difficulty is readily apparent.    Thus the observer could stop the processing 

and rerun the experiment with new data or he could vary the parameters of the algorithm.    Un- 

like the communication problem,  there is no continual data stream being received.    Thus no 

storage problem exists and the processing could be performed in nonreal time.    Under such 

conditions,  flexibility in modifying the algorithm as it operates is available and this freedom 

could be used to advantage. 
Finally,   it appears that a modification to the algorithm discussed here should be possible 

to permit specific consideration of parameters with continuous a priori distributions.    If this 

distribution is known,  and the noise distribution is also known,  it is possible to measure the 

degree to which a set of estimates,   as a whole,  agrees with the data.    Thus,   if one incrementally 
picks the optimum value for a parameter in a sequential procedure,  he may not be selecting the 
same value he would obtain by a joint estimation procedure.    This notion suggests a coarse es- 

timate with the incremental,  sequential method,  followed by a variational correction at a later 

stage,  if the coarse estimate appears correct.    An explicit technique for such a procedure,  as 
well as its analysis,  is outside the scope of this research.    However,   intuition gained from 

dealing with the sequential techniques suggests that a modification of this type would be possible 
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and that its implementation would substantially extend the scope of the problems amenable to a 

sequential measurement algorithm. 

C.    Conclusions 

We have introduced a measurement technique that was suggested by the sequential decoding 

procedure for convolutionally encoded messages.    This method was analyzed and found to be 

satisfactory,  if several conditions of a fairly general nature were met.    One specific, but com- 

plex,  measurement problem was considered in detail and it satisfied these conditions.    It is hoped 

that further research on this technique will show that it has applicability in other areas where 

multidimensional parameter sets are to be measured. 
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APPENDIX A 

LEMMAS 

Lemma 1. 

If |o.(r) is the log moment generating function of a random variable  m,   |a.*(t) is that of the 

random variable m*,  and \x(r, t) is their joint log moment generating function,  then 

HOMU H-0(r) + N#(t) 

n(r) < |iQ(r) 

Hi*<t) < \i*(t) 

where |JL (r) = l/2 n(2r) and |a*(t) = l/2 hi*(2t). 

Proof. 

Schwartz inequality,   in its most general form,   states that 

E2 [f(x) g(x)] <E [f2(x)] E [g2(x)] 

thus 

Also, 

Similarly, 

y2(r,t) = E2 [erm etm*] < E [e2rm]   E [e2tm*] 

y(r,t)< [y(2r) y*(2t)]l/2 

|ji(r,t)< | lny(2r) + | lny*(2t) 

=  | jx(2r) + | n*(2t) 

= K0(r) + |i*(t)       . 

y2(r) =E2 [erm]  <E [e2rm] 

7(r)< [y(2r)]l/2 

K(r) < | In y(2r) 

= | K(2r) 

= »o<r) • 

H: :(t) 4 |- In y* 

= n*(t) 

(2t) 
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Lemma 2. 

Let g(n) be a positive symmetric function of n,   a random variable with symmetric probabil- 

dn.    Let g(n) be monotone d< 

E [g(n -Ö1)J   >E [g(n-«2)J 

ity element p(n) dn.    Let g(n) be monotone decreasing as a function of |n| .    Then,   if |ö?|  ^ |ö. 

Proof. 

Let G(n) = g(n - 6   ) - g(n - 6^).    By Lemma 2a,  G(n) is asymmetric about  (<5. + öj/2 ^ <5   . 

If öz < — | «511,  6Q < 0,  and when n < <5Q,   |n - «2|   = \n - öi + (öi - ö2)\ < | n — <5 ± | .    Thus,  by the 

monotone-decreasing assumption for g(n),  G(n) < 0 for n < Ö    and G(n) > 0 for n > 6   .    Similarly, 

if ö7 > |ö.|,  G(n) > 0 for n < <5   ,   and G(n) < 0 for n > <5   .    There are four cases: 

(1) <52 > | ö 11 6J[>0 

(2) 6Z > |öj 6± < 0 

(3) <52<- |öj 6i^0 

(4) ö2<- | «511 6i < 0       . 

We consider in detail case (1);  the others follow in a similar manner. 

p°° Mö.+ö?)/2 p°o 
\       p(n) G(n) dn =   \ p(n) G(n) dn +   \ p(n) G(n) dn 
J-<» J-oo J(ß d+<52)/2 

Mö   +6   )/2 r(ö   +Ö   )/2 
=   \ L        p(n) G(n) dn +   \ p(ö1 + <52 - n) G(ö1 + <52 - n) dn 

J-OO J-OO 

r(ö,+<5   )/2 Mö  +Ö   )/2 
-   \ p(n) G(n) dn - \     2 p(ö1 + «2 - n) G(n) dn 

J_ oO J— oo 

f(ö   +Ö   )/2 
=   \ G(n) [p(n) -p(n -6    -ö2)] dn 

J-00 

^ 0 

The inequality follows from the fact that p(n) > p(n - 6^ - <52) for n < (öd + 62)/2 and the other 

manipulations are possible because of the symmetry assumption. 

Lemma 2a. 

If f(x) is a symmetric function of x,   f(x) — f(x — 6) is asymmetric about 6/2. 

Proof. 

By the definition of asymmetry, 

g(x + 6Q) = - g(- x + 6o) 

then 
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f(x + 6/2) - f(x + ö/2 - 6) = f(x + 6/2) - f(x - ö/Z) 

= f(-x -6/2) -f(6/2 -x) 

= -[f(-x + 6/2) -f(-x-6/2)] 

= - [f(-x + 6/2) - f(-x + 6/2 -6)] 
Q. E.D. 

Lemma 3. 

If f is a continuous function and has a continuous derivative on (a, b) and if f(b) = 0,   f'(b) > 0, 

and f(a) > 0,  then there exists an x e   (a, b) such that f(x) = 0.    In addition,  there exists aye   (a, b) 

such that f'(y) = 0. 

Proof. 

Under the above conditions,  there exists an 6    > 0 such that f'(b — 6) > 0 for all 6,   0 < 6 < 6   . 

Hence  f is monotone increasing on (b — 6   , b).    Thus there exists a w < b,   such that f(w) < 0. 
Since  f is continuous,  there exists an x e   (a, b) such that f(x) = 0. 

Rolle's theorem provides the second part.    Since f(x) = f(b) there exists aye   (x,b) such 
that f'(y) = 0. 
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APPENDIX B 

LINEAR REGRESSION ANALYSIS 

If the equations expressing the relationship between the undisturbed filter output and the 

xilter components are examined,  it becomes clear that the problem can be formulated in terms 

of linear regression theory and that its techniques can be applied directly.     Now y., . . . , y2]u   j 

are 2N — 1 independent random variables,  all having variances cr    and with means given by the 

so-called regression function 

(B-l) 

N 

E [7.] = ^=   S    aijhj i= 1, ...,2N-1 

j=l 

where the (a..,. . ., a.N),   i = 1, . . ., 2N — 1 are known vectors constructed from the N input 

components s., . . . , sN>    If we use normal linear regression analysis techniques,  the parameters 

h., . . . , hlNj can be estimated by considering them as regression coefficients to be determined. 

Let £. be an arbitrary unbiased linear estimator for h..    Thus 

2N-1 

*i=   Z   «yyj       i=1 N    • {B-2> 
3=1 

The unbiased requirement further implies 

2N-1 N 
E [M =   7,   <*■■ 7, a i hi =h- 1   iJ <->        ij    ^      ]k    k        l 

(B-3) 

j = l k=l 

which,   in turn,  requires that the a., must satisfy 

2N-1 

j = l 
k = öik (B-4) 

where fi..   is the Kronecker delta.    If we desire a minimum variance estimator,   we must minimize 

2N-1 

j=i 

2    2 (B-5) 

with respect to a.. subject to Eq. (B-4). 

Using a set of LaGrange multipliers to include the constraints, 

N /2N-1 

,ar[?i]-2a2   I    xj    I     a., a.j 
8a 

K\ 
ik_<5ik 

k=l 3=« 

= 0 
i = i, . . . , N 

j = 1, . . . , 2N - 1 
(B-6) 

or 

N 

2(T    a .. — 2cr      / .    X.,   a.,   = 
ij u       ik   jk 

k=l 

= 0 
i = 1 ,N 

j = 1, . . . , 2N - 1 
(B-7) 
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In addition,  there is the constraint equation 

2N-1 

E      <*ijajk = Öik       • [Eq.(B-4)J 

Thus 

N 

aij=    2    *ik
ajk      • <B"8> 

k=l 

If we multiply this result by a.,   and sum over j, 
J 

2N-1 2N-1     N 

E      «ijaj£   =      E        E    \ 
j = l j=l    k=l 

ij *j' ^       ^    ^ik aJk aj£ 

N 

- Z x, 
k=l 

ik ck* 

= «if (B-9) 

where 

2N-1 
c
k£   =      E     ajk*j£        • (B-10) 

As long as the (a.^        , a.N) are linearly independent,  it is clear from Eq. (B-9) that the solution 

for the X.,   is given by the matrix equation 

[\k]= [c^]"1 = [cik] (B-ll) 

where c     is the element in the i     row and k     column of [c,]~        Consequently,  from Eqs  (B-2), 

(B-8),   and (B-ll),  the minimum variance unbiased linear estimator for h. is the linear combina- 

tion of the samples given by 

2N-1     N 
ik 

*i=   I    E c1 a
Jkyj 

i=i k=i 

where 

2N-1 

E 

N 

d.. 
•yj 

dH = E 
k=l 

ik c aok   • 

(B-12) 

(B-13) 
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To find ~he variance of this estimate,  we substitute Eqs. (B-4),   (B-8),  and (B-ll) into 

Eq. (B-5). 

2N-1 
2    2 var [^1=      E     aij * 

j = i 

2N-1 N 

= a        ),     a..    ),    \.,   a., 

j=i k=l 

2N-1     N 
2      v        V       ik 

•* h       h    c      «ijajk 

j = l    k=l 

N 
2    V     *       ^ 

ik 
k=l 

2    *i =  (T      C 

We may note that in the problem under consideration, 

Jk   lo 

Thus Eq. i.B-10) becomes 

j-k+1 k< j < N + k - 1 

otherwise 

N+k-1 

c
k£   =       L       sj-k+l Sj-£ +1 

j=k 

N 

=  E 
m=l 

s     s    ,.    . m    m+k-£ 

the autocorrelation function of the input signal.    Should this be an impulse, 

then 

Ck£   = N 6k£ 

kl        1   . 
c       =  N 6k£ 

and the weights for the terms in the linear regression formula will be 

N 

*ij =    E    N Ö
ik

Sj-k+l 

(B-14) 

(B-15) 

(B-16) 

(B-17) 

(B-18) 

k=l 

=  N  sj-i+l      • (B-19) 

It is thus clear that the minimum variance unbiased linear estimate for h. is the cross 

correlation of the filter input with the noisy output given by 
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N+i-1 

J = l      J J 

The corresponding variance can be computed from Eqs. (B-14) and (B-18) 

var [tt] = cr2/N       . 

If the input does not have an impulse for an autocorrelation function,  a modified form of the 

cross correlation is used.    The pertinent coefficients are to be found in Eq. (B-13) which re- 

quires the inversion of the c,   matrix. 
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APPENDIX C 

WEAKENING THE DIFFERENTIAL BIAS ASSUMPTION 

In this appendix,  we show that the differential bias assumption can be weakened to a condi- 

tion on the sum of the individual biases,  if the probability density of the noise has a certain gen- 

eral property.    Specifically,  we assume that p (n) is upper bounded by a function of the form 

Ae~    '    '  where A and a  are any positive constants.    Then we show that the moment  generating 

functions obtained under the differential bias assumption can also be obtained under the more 

general condition 

k 

E 
i=l 

| rt. | >k6 

for all k,   where  <5  is a constant and the {ö.} are the differential biases of the incorrect branches 

involved. 

First,   from Eq. (13) 

r«1'!.) = etR 
r\oo 

J       Pn 
(x) p (x + ÖV dx t ^0 

Thus,  from the hypothesis above,  assuming that 6. is positive (the case of 6. negative follows 

in a similar manner), 

»fl|tKiw.ffl 

UL'"'" 
(x+6)t dx 

C        ax    -a(x+<5)t  ,     ,   C       -ax    -a(x+6)t  , \      e       e dx + \      e e dx I 

A1+t etR   \e-aö + e^l M        -««(1-t), .   e^l 
a 1 + t       1 -t    ll     e J       1 + t t >0 

-    tR  . 1+t Ä. s 2e      A        r   -aöt     .    -aö 
 ö- fe ~ t e 

a(l-0 

2etRAme-a6t 

a(l-t2) 

2etRAl+te-a6 

0 < t < 1 

1 < t 
a(t" - 1) 

for 6 > 0 and the sign of the exponent is reversed if ß < 0.    Thus,   in either case,  the dependence 

on | 6 |  is exponential.    When we consider the moment  generating function of the sum of the 

metric on many incorrect branches as in Eq. (13),   we take the product of the moment  generating 

functions.    Thus the required moment generating function is bounded by an expression that is 

exponential in the sum of the magnitude of the corresponding individual biases.    In particular, 

the bound is of the form 
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y««t>< 

f1(t) exp 

f2(t) exp 

-<*t   I    |«.| 
i=l 

-« E l«il 

0 < t< 1 

1 < t 

Thus if    2     |ö.| > k<5 for all  k, 
i=l      x 

y.(k)<t)« 
f4(t) e 

-atkö 

f2(t) e -akö 

as before. 

0< t< 1 

1 < t 
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APPENDIX D 
AVERAGE REFLECTION FROM DEPTH N 

In this section,  we make a calculation to indicate roughly the size of the effect one is trying 

to observe in the geophysical model described in Sec.II-E.    In particular,  we consider the mag- 

nitude of a reflection from a discontinuity at depth N.    However,  in order not to specialize the 

result to a particular sequence of impedance values,  we compute the average reflection over 

the ensemble of all such sequences.    In addition,  the result is confined to the initial return, 

since this is the one used to make the initial decision on an impedance and thus determines 

whether the estimate will require correction. 

Assume first that each impedance value is chosen independently and that the impedance at 

depth n,   Z    is Z»  or ZR with probability one half.    Assume also that Z . = Z..    Then there 

are four possibilities for discontinuity at depth N: 

ZN-1 EN 
(1) ZA ZA 

(2) ZA ZB 

(3) ZB ZA 

(4) ZB ZB 

The first and the last give no reflection,  while the other two do so.    We thus consider (2) and 

(3) for reflections. 

Suppose that ZN       = Z.  and ZN = Z„.    Since Z.,   ZN_,,   and ZN are determined,  there are 

N — 3 impedance values to be chosen at random.    But for K sections there are K + 1 transitions 

between them,   and thus there are N — 2 locations for possible reflection.    In the case under 

current consideration,   Z. and Z.T   . are both ZA.    Thus,   if there are n transitions from A to 1 N-l A 
B,   there are  n transitions back from  B to A.    These 2n transitions can be arranged among 

the N — 2 potential transition locations in (    ?     ) ways.    Thus the probability of n transitions 
/N — 2\    -(N-3) from A  to B,   assuming that Z    and ZN_    are both Z. ,   is (     2     f 2  v 

If there are n A to B transitions,  and n B to A transitions for a signal moving in the 

direction of increasing depth,  there are the same number of each in the direction of decreasing 

depth.    Hence the transmission coefficient for an input pulse along a path to discontinuity at 

depth  N  from A to B  with n other A to B transitions along the way is 

rp     _    rp   £n.      ry  ^*li     -p» 

'  *AB     BA l AB 

where T . ß is the transmission coefficient for a discontinuity from A to  B,   TR.  is the same 

quantity for the reverse case,  and r.B is the reflection coefficient for an A to B junction. 

Thus,   over the ensemble of impedance value sets,  the average transmission coefficient is 

5-* 
T = y     /N-2\     2n      2n  r        ?-(N-3) 

Li     \    2n ^AB  XBA l AB L 

n=0 

for N  even.    If this sum is carried out by using the binomial expansion, 
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N-2        / A        vN-21 , - r) 
+ r) --'"-"!(• *^r*(-^n» 

where r = Z./Zß .    The cases of N odd and the reversed discontinuity at depth N  follow in a 
similar manner and give essentially the same result. 

Since  r is positive,  the first term in the square brackets is the most significant for large 

N.    Thus the return is exponentially decreasing with N, for N  large. 
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